Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработан новый подход к получению сверхинтенсивных источников нейтронов и гамма-излучения
Международная группа ученых, в состав которой вошли специалисты из МФТИ, ОИВТ РАН и ФИ РАН, разработала новый подход к получению сверхинтенсивных источников нейтронов и гамма-излучения. Мощный поток взаимодействует с мишенью из легчайшей полимерной пены, формируя короткоимпульсный источник десятков миллиардов нейтронов и триллионов гамма-квантов. Полученное гамма-излучение интенсивнее, чем у ускорителей частиц площадью в несколько футбольных полей. Такой источник может быть использован во многих областях исследований — от астрофизики до медицинских и биофизических приложений.
Работа опубликована в журнале Nature Communications. Сверхинтенсивные фотонные и нейтронные пучки — это незаменимые инструменты для современной науки. Например, чтобы воспроизвести в лаборатории процессы, происходящие в далеком космосе, требуются потоки нейтронов, в которых через площадку в один квадратный сантиметр за секунду пролетает свыше секстиллиона (1021) частиц. Такие показатели недостижимы для существующих традиционных установок на основе ускорителей. Один из перспективных подходов, обсуждаемый в настоящее время, основан на применении сверхмощных лазеров.
Международная группа ученых разработала экспериментальную схему для генерации сверхинтенсивных гамма- и нейтронных пучков при умеренных релятивистских интенсивностях лазерного излучения с высокой надежностью и рекордными значениями потоков гамма-излучения и нейтронов. В своем эксперименте ученые использовали лазер PHELIX (Petawatt High-Energy Laser for Heavy Ion Experiments — петаваттный высокоэнергетический лазер для экспериментов с тяжелыми ионами). Его мощность (1015 Вт) примерно в тысячу раз больше, чем суммарная мощность электростанций во всем мире, правда, импульс длится всего триллионную часть секунды.
Лазерное излучение воздействует двумя последовательными импульсами: первый, «предварительный» наносекундный импульс направляется в мишень из пены триацетата целлюлозы плотностью всего два мг/см3, в которой за счет ионизации атомов вещества генерируется однородная плазма. Второй, более мощный импульс пикосекундной длительности распространяется уже в созданной первым плазме, ускоряя электроны до высоких энергий. Полученная в результате этого процесса энергия электронов достигает сотни мегаэлектронвольт, что сравнимо со значениями, получаемыми на синхротронных ускорителях электронных пучков.
Далее необходимо заставить электрон «сбросить» энергию, излучив фотон с длиной волны в десятитысячные доли нанометра (10-4 нм) — тот самый гамма-квант, ради которого все и затевалось. В этом эксперименте для торможения электронов была использована тонкая золотая пластинка. Таким образом исследователям удалось получить направленные пучки гамма-излучения, содержащие триллионы квантов. В эксперименте была достигнута рекордная эффективность преобразования (более 1,4 процентов) лазерной энергии в гамма-излучение с энергией выше 10 МэВ.

Установив поодаль от основной мишени слои металлической фольги (в эксперименте использовались золото, хром тантал и индий), исследователи зарегистрировали мощное нейтронное излучение — более 60 миллиардов частиц. Нейтроны высвобождаются в ходе фотоядерной реакции при поглощении ядром металла высокоэнергетического гамма-кванта. Эффективность преобразования лазерной энергии в нейтроны составила порядка 0,05 процентов.
Кроме того, причиной ядерной реакции могут стать протоны, которые также возможно ускорить с помощью лазерного излучения. В качестве источника протонов использовалась металлическая фольга, которую располагали на задней плоскости полимерной мишени. Ускоренные в полимерной мишени под воздействием лазера электроны покидали фольгу, формируя отрицательный заряд снаружи, при этом сама фольга заряжалась положительно. Возникшее между отрицательным и положительным зарядом электростатическое поле «вытягивает» из фольги протоны.
Интерес ученых к нейтронам обусловлен тем, что они не несут электрического заряда и поэтому могут проникать глубоко в атомы вещества. «Освещение» материалов нейтронами позволяет различать положения атомов легких элементов (водорода, кислорода и других), что почти невозможно с использованием рентгеновских и гамма-лучей. По этой причине нейтроны успешно применяются при изучении белковых макромолекул, полимеров, микродефектов и микронеоднородностей в растворах и сплавах, в медицине и других областях. Астрофизики с помощью лабораторных источников нейтронного излучения могут проверить предположения о процессах, происходящих в недоступных для нас звездах.
В итоге относительно недорогая и компактная лазерная установка оказалась способна в некоторых аспектах заменить собой классический радиочастотный ускоритель электронов. Полученный импульсный источник направленного рентгеновского излучения и нейтронов может быть использован во многих областях исследований — в рентгенографических и материаловедческих, в медицинских и биофизических приложениях (включая FLASH-радиотерапию), а также ядерных исследованиях.

«Эти исследования являются хорошим примером важности сотрудничества как экспериментаторов с теоретиками, так и ученых из разных стран, — отмечает Николай Андреев, руководитель лаборатории лазерной плазмы ОИВТ РАН, профессор кафедры физики высоких плотностей энергии МФТИ.
— Новые, важные для развития фундаментальной и прикладной науки, рекордные результаты были получены с использованием полномасштабного численного моделирования при планировании и обработке результатов эксперимента, для чего потребовались самые современные вычислительные комплексы в России и Германии. Решающим элементом в экспериментах, которыми руководит выпускница Физтеха профессор Ольга Николаевна Розмей, являются уникальные мишени из пены, созданные в Физическом институте имени П. Н. Лебедева РАН, в лаборатории термоядерных мишеней нейтронно-физического отдела, возглавляемого Натальей Глебовной Борисенко».
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
