Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Пермские ученые повысили эффективность нефтедобычи
В нефтедобыче прогнозирование свойств коллекторов — важная задача, позволяющая оценить потенциал месторождения и принять решения по его качественной разработке. Обычно для этого проводят геофизические исследования, с помощью которых определяют характеристики горных пород: пористость, плотность и проницаемость. На их основе строят 3D-модель месторождения и получают информацию о содержащихся в нем запасах нефти и газа. Но структура и свойства коллекторов очень изменчивы, и такая неоднородность часто препятствует получению достоверных данных традиционными методами. Ученые Пермского Политеха разработали подход для моделирования пористости в нефтегазовой отрасли на основе искусственного интеллекта. Он позволит на 56 процентов повысить точность прогноза и эффективность разработки месторождений.
Статья с результатами опубликована в журнале «Геосистемная инженерия». Исследование было профинансировано Минобрнауки России.
Коллекторы – это горные породы, которые содержат пустоты, способные вмещать, удерживать и отдавать флюиды (нефть, газ или воду) при разработке. Моделирование их свойств – одна из ключевых задач при оценке месторождений, где особое значение имеет точное прогнозирование пористости пласта. Традиционно для этой цели изучают керн горных пород и проводят геофизические исследования скважин. В частности, радиоактивный, электрический и акустический каротаж позволяют физически измерить плотность, пористость и проницаемость пород. Но в условиях сложного геологического строения технические ограничения таких методов и неоднородность пластов снижают точность прогноза. Нейронные сети и машинное обучение могут повысить качество прогнозов и точность 3D-моделирования месторождений.
Ученые Пермского Политеха предложили подход к оценке пористости коллекторов с использованием алгоритмов машинного обучения, разработанных на основе существующих результатов геофизических исследований скважин. Полученные данные интегрировали в 3Д-модель месторождения, что позволило уточнить распределение пористости и выполнить пересчет запасов нефти.
Политехники проводили исследования на месторождении сложного строения, пористость которого изменяется от 0,7% до 24%, а проницаемость – от незначительных величин до 2,364 мкм2. Для обучения алгоритма собирали базу данных, используя результаты проведения геофизических исследований по 238 скважинам шести месторождений. В дополнение к ним также добавили результаты лабораторных исследований керна (образцов горной породы) по определению пористости.
«Мы провели комплексную работу по сбору данных, обучению и настройке алгоритма, чтобы повысить его точность и обеспечить возможность адаптации разработки под конкретные условия. Построенную модель машинного обучения использовали для уточнения геологической модели месторождения и пересчета запасов нефти. Прогноз пористости выполнили для 22 скважин. В результате мы отметили повышение его точности на 56% по сравнению со стандартным методом», – рассказывает Сергей Кривощеков, доцент кафедры геологии нефти и газа ПНИПУ, кандидат технических наук.
Уточнение 3Д-модели с помощью разработанных алгоритмов помогло выявить, что в целом по месторождению наблюдается умеренный рост запасов углеводородов. Это объясняется увеличением средних значений пористости по сравнению с начальной моделью.
«Мы выявили дополнительные места с запасами нефти, которые ранее не были задействованы в разработке. Это позволило скорректировать план по добыче, включив в него новые зоны. Разработанный подход дает возможность более эффективно использовать ресурсы месторождения, снижая затраты и увеличивая объемы добычи», – объясняет Георгий Шиверский, аспирант кафедры геологии нефти и газа ПНИПУ.
Работа ученых ПНИПУ доказала перспективы применения алгоритмов машинного обучения для моделирования и прогнозирования пористости в условиях высокой геологической неоднородности. Разработанный подход позволяет автоматизировать и повысить качество прогноза свойств скважин, что оптимизирует разработку нефтяных месторождений. В скором будущем подобные технологии станут стандартным инструментом при исследовании недр, объединяя накопленные геологические знания с новейшими достижениями в области анализа данных и искусственного интеллекта.
В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».
Группа ученых представила расчеты, по которым события в центре Млечного Пути можно объяснить без черной дыры. Правда, с физической точки зрения новое объяснение существенно более экзотично — настолько, что возникает вопрос о его соответствии бритве Оккама.
Ученые из МФТИ, НИУ ВШЭ и ОИВТ РАН показали, что жидкость может перейти в стеклообразное состояние под действием давления. Эта работа не только раскрывает механизм перехода, заполняя пробелы в фундаментальных вопросах физики, но и предлагает подход, с высокой точностью моделирующий поведение материалов в экстремальных условиях.
В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».
Специалисты УКБ №1 имени С.Р. Миротворцева СГМУ имени В.И. Разумовского провели успешное эндоскопическое удаление крупного кровоточащего новообразования толстой кишки у ребенка без разреза, через просвет кишки.
Ученые РГУ нефти и газа (НИУ) имени И. М. Губкина и Института проблем управления имени В.А. Трапезникова РАН (ИПУ РАН) создали технологию экспресс-анализа качества природного газа. Впервые для этих целей была разработана нейросеть, что позволило определить показатели качества пробы в режиме реального времени за несколько секунд вместо 20-40 минут традиционным способом — с помощью газовой хроматографии.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно