Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Пермские ученые повысили эффективность нефтедобычи
В нефтедобыче прогнозирование свойств коллекторов — важная задача, позволяющая оценить потенциал месторождения и принять решения по его качественной разработке. Обычно для этого проводят геофизические исследования, с помощью которых определяют характеристики горных пород: пористость, плотность и проницаемость. На их основе строят 3D-модель месторождения и получают информацию о содержащихся в нем запасах нефти и газа. Но структура и свойства коллекторов очень изменчивы, и такая неоднородность часто препятствует получению достоверных данных традиционными методами. Ученые Пермского Политеха разработали подход для моделирования пористости в нефтегазовой отрасли на основе искусственного интеллекта. Он позволит на 56 процентов повысить точность прогноза и эффективность разработки месторождений.
Статья с результатами опубликована в журнале «Геосистемная инженерия». Исследование было профинансировано Минобрнауки России.
Коллекторы – это горные породы, которые содержат пустоты, способные вмещать, удерживать и отдавать флюиды (нефть, газ или воду) при разработке. Моделирование их свойств – одна из ключевых задач при оценке месторождений, где особое значение имеет точное прогнозирование пористости пласта. Традиционно для этой цели изучают керн горных пород и проводят геофизические исследования скважин. В частности, радиоактивный, электрический и акустический каротаж позволяют физически измерить плотность, пористость и проницаемость пород. Но в условиях сложного геологического строения технические ограничения таких методов и неоднородность пластов снижают точность прогноза. Нейронные сети и машинное обучение могут повысить качество прогнозов и точность 3D-моделирования месторождений.
Ученые Пермского Политеха предложили подход к оценке пористости коллекторов с использованием алгоритмов машинного обучения, разработанных на основе существующих результатов геофизических исследований скважин. Полученные данные интегрировали в 3Д-модель месторождения, что позволило уточнить распределение пористости и выполнить пересчет запасов нефти.
Политехники проводили исследования на месторождении сложного строения, пористость которого изменяется от 0,7% до 24%, а проницаемость – от незначительных величин до 2,364 мкм2. Для обучения алгоритма собирали базу данных, используя результаты проведения геофизических исследований по 238 скважинам шести месторождений. В дополнение к ним также добавили результаты лабораторных исследований керна (образцов горной породы) по определению пористости.
«Мы провели комплексную работу по сбору данных, обучению и настройке алгоритма, чтобы повысить его точность и обеспечить возможность адаптации разработки под конкретные условия. Построенную модель машинного обучения использовали для уточнения геологической модели месторождения и пересчета запасов нефти. Прогноз пористости выполнили для 22 скважин. В результате мы отметили повышение его точности на 56% по сравнению со стандартным методом», – рассказывает Сергей Кривощеков, доцент кафедры геологии нефти и газа ПНИПУ, кандидат технических наук.
Уточнение 3Д-модели с помощью разработанных алгоритмов помогло выявить, что в целом по месторождению наблюдается умеренный рост запасов углеводородов. Это объясняется увеличением средних значений пористости по сравнению с начальной моделью.
«Мы выявили дополнительные места с запасами нефти, которые ранее не были задействованы в разработке. Это позволило скорректировать план по добыче, включив в него новые зоны. Разработанный подход дает возможность более эффективно использовать ресурсы месторождения, снижая затраты и увеличивая объемы добычи», – объясняет Георгий Шиверский, аспирант кафедры геологии нефти и газа ПНИПУ.
Работа ученых ПНИПУ доказала перспективы применения алгоритмов машинного обучения для моделирования и прогнозирования пористости в условиях высокой геологической неоднородности. Разработанный подход позволяет автоматизировать и повысить качество прогноза свойств скважин, что оптимизирует разработку нефтяных месторождений. В скором будущем подобные технологии станут стандартным инструментом при исследовании недр, объединяя накопленные геологические знания с новейшими достижениями в области анализа данных и искусственного интеллекта.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
На отвесных скалах итальянского побережья, куда десятилетиями поднимались только скалолазы, скрывалась уникальная находка. Речь идет о загадочных отпечатках, которые рассказали драматическую историю, развернувшуюся много миллионов лет назад. Ученые считают, что стали свидетелями момента внезапной паники животных, причиной которой было землетрясение.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно