Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Пермские ученые повысили эффективность нефтедобычи
В нефтедобыче прогнозирование свойств коллекторов — важная задача, позволяющая оценить потенциал месторождения и принять решения по его качественной разработке. Обычно для этого проводят геофизические исследования, с помощью которых определяют характеристики горных пород: пористость, плотность и проницаемость. На их основе строят 3D-модель месторождения и получают информацию о содержащихся в нем запасах нефти и газа. Но структура и свойства коллекторов очень изменчивы, и такая неоднородность часто препятствует получению достоверных данных традиционными методами. Ученые Пермского Политеха разработали подход для моделирования пористости в нефтегазовой отрасли на основе искусственного интеллекта. Он позволит на 56 процентов повысить точность прогноза и эффективность разработки месторождений.
Статья с результатами опубликована в журнале «Геосистемная инженерия». Исследование было профинансировано Минобрнауки России.
Коллекторы – это горные породы, которые содержат пустоты, способные вмещать, удерживать и отдавать флюиды (нефть, газ или воду) при разработке. Моделирование их свойств – одна из ключевых задач при оценке месторождений, где особое значение имеет точное прогнозирование пористости пласта. Традиционно для этой цели изучают керн горных пород и проводят геофизические исследования скважин. В частности, радиоактивный, электрический и акустический каротаж позволяют физически измерить плотность, пористость и проницаемость пород. Но в условиях сложного геологического строения технические ограничения таких методов и неоднородность пластов снижают точность прогноза. Нейронные сети и машинное обучение могут повысить качество прогнозов и точность 3D-моделирования месторождений.
Ученые Пермского Политеха предложили подход к оценке пористости коллекторов с использованием алгоритмов машинного обучения, разработанных на основе существующих результатов геофизических исследований скважин. Полученные данные интегрировали в 3Д-модель месторождения, что позволило уточнить распределение пористости и выполнить пересчет запасов нефти.
Политехники проводили исследования на месторождении сложного строения, пористость которого изменяется от 0,7% до 24%, а проницаемость – от незначительных величин до 2,364 мкм2. Для обучения алгоритма собирали базу данных, используя результаты проведения геофизических исследований по 238 скважинам шести месторождений. В дополнение к ним также добавили результаты лабораторных исследований керна (образцов горной породы) по определению пористости.
«Мы провели комплексную работу по сбору данных, обучению и настройке алгоритма, чтобы повысить его точность и обеспечить возможность адаптации разработки под конкретные условия. Построенную модель машинного обучения использовали для уточнения геологической модели месторождения и пересчета запасов нефти. Прогноз пористости выполнили для 22 скважин. В результате мы отметили повышение его точности на 56% по сравнению со стандартным методом», – рассказывает Сергей Кривощеков, доцент кафедры геологии нефти и газа ПНИПУ, кандидат технических наук.
Уточнение 3Д-модели с помощью разработанных алгоритмов помогло выявить, что в целом по месторождению наблюдается умеренный рост запасов углеводородов. Это объясняется увеличением средних значений пористости по сравнению с начальной моделью.
«Мы выявили дополнительные места с запасами нефти, которые ранее не были задействованы в разработке. Это позволило скорректировать план по добыче, включив в него новые зоны. Разработанный подход дает возможность более эффективно использовать ресурсы месторождения, снижая затраты и увеличивая объемы добычи», – объясняет Георгий Шиверский, аспирант кафедры геологии нефти и газа ПНИПУ.
Работа ученых ПНИПУ доказала перспективы применения алгоритмов машинного обучения для моделирования и прогнозирования пористости в условиях высокой геологической неоднородности. Разработанный подход позволяет автоматизировать и повысить качество прогноза свойств скважин, что оптимизирует разработку нефтяных месторождений. В скором будущем подобные технологии станут стандартным инструментом при исследовании недр, объединяя накопленные геологические знания с новейшими достижениями в области анализа данных и искусственного интеллекта.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Расчеты показывают, что на лунную базу каждодневно будут падать десятки микрометеороидов, а даже самые мелкие из них способны повредить модуль и создать угрозу для астронавтов. Впрочем, для этой проблемы есть проверенное решение — так называемый щит Уиппла.
Четвертый вид вируса герпеса человека (HHV-4) — вирус Эпштейна — Барр — оказался связан с развитием системной красной волчанки. Результаты нового исследования показали, что вирус не просто присутствует в иммунных клетках пациентов, а целенаправленно «перепрограммирует» их, превращая в «драйверы» аутоиммунного воспаления.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.
На уникальных древнеримских стеклянных сосудах обнаружили тайные знаки, которые оказались клеймами ремесленных мастерских. Эти символы, ранее считавшиеся простым украшением, раскрыли, как работали античные мастера, и помогли доказать существование аналогов современных брендов почти две тысячи лет назад.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно