• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
29.12.2025, 09:50
ПНИПУ
79

Ученые смоделировали полный цикл кислотной обработки карбонатных коллекторов для повышения добычи

❋ 4.7

Добыча полезных ископаемых из карбонатных коллекторов, составляющих значительную часть мировых запасов, сейчас сталкивается с ключевой проблемой — низкой проницаемостью пород. Это значит, что нефть и газ находятся в изолированных порах и не могут естественным путем поступать к скважине, что делает традиционные методы добычи малоэффективными и очень дорогими. Стандартным решением для этого является кислотная обработка, когда в пласт закачивают реагент, который растворяет породу. Однако сейчас этот процесс остается непредсказуемым из-за отсутствия точных данных о трансформации породы при длительном воздействии кислотного раствора. Ученые из Пермского Политеха и ИПНГ РАН разработали уникальную методику кислотной обработки, которая позволяет более точно оценить изменение проницаемости породы. Разработка уникальна и не имеет аналогов в мире.

Нефтяная насосная установка / © bashta, Istockphoto.com

Карбонатные коллекторы — это подземные пласты-резервуары, представленные в основном известняками и доломитами. По статистике, на территории России содержание нефти в них составляет более 50% от всех запасов в стране. Однако их разработка часто нерентабельна из-за сложного строения и низкой проницаемости породы. В отличие от терригенных коллекторов, преимущественно состоящих из песчаников, где поры хорошо соединены между собой, в карбонатных часто имеются изолированные пространства — поры и трещины. Это значит, что нефть или газ, находящиеся в таком пространстве, труднее добывать. С развитием мировой экономики и истощением традиционных месторождений освоение таких сложных коллекторов становится необходимостью.

Стандартным решением для повышения продуктивности в карбонатных пластах является солянокислотная обработка скважины. Суть этого метода заключается в закачке в пласт раствора соляной кислоты, который вступает в химическую реакцию с породами, растворяя их. Это необходимо, чтобы создать разветвленную сеть высокопроводящих каналов, так называемых «червоточин». Они служат эффективными проводниками, обеспечивающими повышение добычи нефти или газа.

Прежде чем закачивать кислоту в реальный пласт, инженеры должны предсказать результат, чтобы рассчитать минимально достаточный объем раствора и спрогнозировать прирост добычи нефти. Однако стандартная методика лабораторных исследований предполагает закачку кислоты только до момента прорыва ее с противоположной стороны образца горной породы, т.е. до появления червоточины. На основании этого выявляется оптимальный объем и скорость закачки реагента.

Однако при этом не изучается дальнейшее влияние кислотной обработки, хотя в реальной скважине раствор продолжает фильтроваться еще некоторое время, взаимодействуя с горной породой.

Главная проблема этой технологии заключается в ее полной непредсказуемости при реальном применении. Если в лаборатории эксперты изучают только первый прорыв кислоты, а на месторождении реагент действует гораздо дольше, то изначальный прогноз окажется ошибочным. В результате инженер лишается возможности достоверно прогнозировать ключевые параметры обработки: глубину воздействия кислоты, как сильно вырастет проницаемость и не разрушится ли при этом порода вокруг скважины. Подобная неопределенность делает технологию рискованной и экономически неэффективной.

Ученые Пермского Политеха совместно с коллегами из ИПНГ РАН разработали уникальную методику, которая позволит более точно изучить полный цикл кислотной обработки карбонатных коллекторов. Статья опубликована в журнале «Недропользование».

На первом этапе исследователи отобрали 10 цилиндрических образцов керна с одного из месторождений России. Экспериментальную выборку тщательно подготовили: очистили от остатков нефти и пластовой воды, затем высушили и зафиксировали исходное визуальное состояние с помощью фотографий. Это обеспечило одинаковые стартовые условия для дальнейшего эксперимента.

На втором этапе были определены основные свойства образцов керна. Используя лабораторное оборудование, специалисты определили их характеристики: проницаемость, пористость и объемную плотность. Эти данные стали контрольными значениями для всех последующих измерений.

Поскольку конечной целью исследования было смоделировать реальный процесс в пласте, в образцах создавали остаточную водонасыщенность. Для этого их поместили в вакуум и пропитали минерализованной водой, чтобы заполнить все пустотное пространство. Это нужно для создания условий, как в естественном коллекторе, где в породе присутствует пластовая вода. После этого ее замещали керосином, который в эксперименте выступил альтернативой нефти. В итоге, перед началом основных испытаний внутреннее пространство образцов (поры и каналы) было заполнено так же, как и в реальном пласте.

Далее ученые моделировали пластовые условия с помощью специальной фильтрационной установки. Внутри нее создавали высокое всестороннее давление (до 46.7 МПа) и нагревали систему до пластовой температуры в 84°C. В этих смоделированных условиях через образцы закачивали раствор и замеряли их проницаемость, чтобы понять, как порода фильтрует нефть или газ в своем естественном состоянии.

После кислотного воздействия их промывали керосином для нейтрализации и удаления остатков реагента и снова измеряли показатели, чтобы оценить итоговый прирост. Фотографии образцов наглядно показали результат: в керне появились извилистые, растворенные кислотой сквозные каналы, так называемые «червоточины».

В результате для каждого из 10 образцов был сформирован парный массив данных: полная характеристика «до» и «после» кислотного воздействия, что и стало основой для последующего глубокого анализа. Эксперименты показали, что средняя проницаемость пород после кислотной обработки увеличилась в 6880 раз, средняя пористость на 17,4%, а плотность снизилась на 2,5%.

«Длинный» (а, б) и стандартный (в, г) образцы керна до (а, в) и после (б, г) воздействия кислотным реагентом / © Пресс-служба ПНИПУ

— На основании полученных данных мы также построили графики, показывающие, насколько вырастут пористость и проницаемость в зависимости от объема пропущенного через пласт реагента. Полученные в ходе исследования результаты могут быть использованы для обновления существующего технического программного обеспечения. Так, инженеры-проектировщики получат рабочий инструмент для точного расчета: смогут ввести в модель данные конкретной скважины (начальную пористость, проницаемость) и задать ожидаемый прирост добычи, после чего программа автоматически определит оптимальный объем и скорость закачки кислоты, — рассказывает Сергей Попов, заведующий лабораторией института проблем нефти и газа РАН, доктор технических наук.

— Однако главное преимущество усовершенствованной методики — ее способность моделировать ключевой для практики параметр: влияние «дозы» кислоты на конечный результат. В отличие от традиционного подхода, который останавливается сразу после прорыва реагента через породу, новая методика продолжает закачку. Это позволяет впервые получить зависимости, показывающие, насколько именно изменятся проницаемость, пористость и плотность породы в зависимости от объема закачанного реагента в околоскважинной зоне. Более того, проведенный расчет доказывает, что больший объем раствора качественно ближе к реальным условиям в скважине, чем традиционный эксперимент. В итоге, метод дает не просто констатацию улучшения показателей, а инструмент для их точного прогнозирования и управления процессом кислотной обработки, — отметил Сергей Чернышов, доктор технических наук, заведующий кафедрой «Нефтегазовые технологии» ПНИПУ.

Методику в дальнейшем можно адаптировать и для других типов коллекторов, что дает универсальный инструмент для прогнозирования проницаемости многих месторождений страны. Инженеры смогут на основе лабораторных данных по конкретной породе быстро рассчитать оптимальные параметры ее химической обработки.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
9 февраля, 11:48
Игорь Байдов

За десятки километров от побережья Гренландии лежат скалистые острова Китсиссут, которые на первый взгляд кажутся неприступными для людей, не имеющих современных лодок и других технологий. Однако авторы нового исследования выяснили, что тысячи лет назад люди все же смогли достичь этих суровых земель. Мореплаватели каменного века не просто посещали острова — они обосновались там, совершив одно из самых длинных и опасных морских путешествий в истории древней Арктики.

7 февраля, 12:57
Редакция Naked Science

Подобно летучим мышам, ориентирующимся в темноте, человек тоже может полагаться на эхо от звуковых сигналов, например щелчков языком, чтобы оценить расстояние до объектов. Как показало новое исследование, эхолокация — это навык, которому можно научиться.

9 февраля, 09:00
ПНИПУ

Канализационный коллектор — скрытый источник загрязнения воздуха в городе. Через его вентиляционные шахты накопленный сероводород и другие агрессивные газы вместе с патогенной микрофлорой выталкиваются на поверхность при сверхплановом заполнении. Эта ядовитая смесь вредит здоровью людей и разъедает бетонные конструкции канализаций. Существующие сегодня защитные механизмы и дорогостоящие вентиляционные системы очистки имеют ограничения: конечные фильтры при достижении пиковой концентрации опасных испарений уходят в аварийный режим. Ученые ПНИПУ и компании «Вентмонтаж» разработали новое решение на основе гидрофильтра. Внедрение системы избавит воздух на 96,8% от механических примесей и на 65% снизит выброс агрессивных газов, а с помощью озонатора обеспечит полное обеззараживание.

6 февраля, 10:11
Александр Березин

В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».

6 февраля, 16:16
Александр Березин

Группа ученых представила расчеты, по которым события в центре Млечного Пути можно объяснить без черной дыры. Правда, с физической точки зрения новое объяснение существенно более экзотично — настолько, что возникает вопрос о его соответствии бритве Оккама.

9 февраля, 13:50
Андрей Серегин

Паническое расстройство характеризуется физическим напряжением, усиленным сердцебиением и одышкой. Ученые из Бразилии нашли способ бороться с этим недугом, создавая схожее физическое напряжение, но в спокойной и контролируемой обстановке — во время физупражнений.

12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно