Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Нейронную сеть научили моделировать потенциальные противораковые лекарства
«Группой разработчиков сделана работа, предвещающая прорыв в открытии новых лекарств. Я думаю этому подходу принадлежит будущее фармацевтики», - Артем Оганов, профессор Сколтеха, МФТИ и Университета Штата Нью-Йорк.
Разработчики из Mail.Ru Group, Insilico Medicine и МФТИ впервые применили нейронную сеть к созданию новых лекарственных препаратов. Использование технологий генеративных нейронных состязательных сетей, обученных «придумывать» молекулярные структуры, может в разы сокращать время и стоимость поиска веществ, обладающих потенциально лечебными свойствами. Исследователи предполагают возможное применение этих технологий для поиска новых препаратов в самых разных областях от онкологии до сердечно-сосудистых заболеваний. Результаты опубликованы в рецензируемом журнале Оncotarget.
На данный момент в базе неорганических молекул несколько сотен миллионов веществ, и только доля процента из них применяется в медицине. Фармакологические методы создания лекарств носят, в основном, наследственный характер. Например, фармакологи продолжают исследовать аспирин, который применяется уже много лет, что-то добавляют к молекуле, чтобы снизить побочные эффекты или повысить эффективность, но это всё то же вещество. Как выбрать из сотен миллионов принципиально новую молекулу, обладающую лечебными свойствами? Эту задачу исследователи из МФТИ и Insilico Medicine решили с помощью нейронной сети еще в начале 2016 года, опубликовав статью в журнале Molecular Pharmaceuticals. В этот раз исследователи решили пойти дальше и поставили себе иную цель — создать новые молекулы с заранее заданными свойствами и заставить глубокие нейронные сети “вообразить” новые структуры молекул, которые могли бы убивать раковые клетки при определенной концентрации.
За основу была взята архитектура состязательных автокодировщиков, являющаяся расширением принципиально нового подхода в глубоком обучении, генеративных состязательных сетей. Для обучения использовались молекулы с известными лечебными свойствами и эффективной концентрацией. Информацию о такой молекуле подавали на вход сети. Сеть настраивали так, чтобы на выходе получить точно такие же данные.
Она была составлена из трёх структурных элементов — кодировщика, декодера и дискриминатора, — каждый из которых выполнял свою специфическую роль, «сотрудничая» с двумя другими. Кодировщик совместно с декодером обучался сжимать и затем восстанавливать информацию об исходной молекуле, а дискриминатор помогал сделать сжатое представление более подходящим для последующего восстановления. После того как сеть обучалась на множестве известных молекул, кодировщик вместе с дискриминатором «выключались», и сеть, используя декодер, генерировала описание молекул уже сама.
Обучение нейронных сетей зависит от количества входных данных и от размеров самой сети. В среднем нейронная сетка обучается в течение недели [зависит как от сети, так и от данных и железа]. То, насколько хорошо идёт воспроизведение, влияет конфигурация слоев. Поиск наиболее оптимального решения архитектуры сети может занять от нескольких дней до нескольких месяцев. Настройка нейронной сети — это целое искусство.
Все молекулы имеют представление в виде “смайлзов” — буквенных аннотаций химического вещества, которые позволяют восстановить его структуру. Стандартная запись, которой обучали в школе, не подходит для обработки сетью, но и смайлз не очень подходит — он имеет произвольную длину от одной буквы до 200. Для обучения нейронной сети требуется одинаковая длина описания (вектора). Решает эту задачу фингерпринт, в переводе «отпечаток пальца» молекулы. Фингерпринт содержит в себе всю информацию о молекуле. Существует множество способов построения «отпечатка», исследователи использовали самый простой бинарный из 166 цифр. Они конвертировали смайлзы в фингерпринты и на них уже обучали сеть.
На вход нейронной сети подавались «отпечатки» известных лекарственных молекул. Сеть должна была распределить веса параметров внутренних нейронов так, чтобы при заданном входе получился заданный же выход. Эта операция повторялась много раз — так происходит обучение на большом количестве данных. В результате получается «чёрный ящик», который умеет при заданном входе давать заданный выход. Затем разработчики убрали первые слои, и сеть генерировала фингерпринты при обратном прогоне уже сама. Учёные построили «отпечатки» для всех 72 млн молекул и далее сравнивали сгенерированные сетью фингерпринты с базой. Отобранные молекулы должны потенциально обладать заданными качествами.

Для проверки сети использовали базу известных противораковых лекарств. Исследовали сверили сгенерированные сетью соединения с общей базой. Из полученных 69 молекул многие являются активно используемыми противораковыми препаратами. А вот остальные потенциально могут стать основой новых лекарственных препаратов.
Рассказывает один из авторов исследования Александр Жаворонков, глава Insilico Medicine и международный адъюнкт-профессор МФТИ: «Генеративные состязательные сети с применением обучения с подкреплением — это будущее фармакологии. В этой статье мы показали первое применение генеративных состязательных автокодировщиков, GAN’ов, для создания новых молекулярных структур противоопухолевых препаратов по определённым параметрам. Эта работа была сделана ещё летом, и с тех пор мы значительно продвинулись в этом направлении. Я очень надеюсь, что в скором времени мы сможем разрабатывать индивидуальные лекарства для лечения редких заболеваний и даже для лечения отдельных пациентов. Уже в этом году искусственный интеллект начнёт трансформировать фармацевтическую индустрию».
«GAN’ы находятся сейчас на переднем крае нейронауки. Совершенно очевидно, что они могут быть использованы на более широком спектре задач, чем генерация картинок и музыки. Мы попробовали применить этот подход в биоинформатике и получили прекрасный результат», — подводит итог Артур Кадурин, ведущий программист группы оптимизации поиска Mail.Ru Group, независимый научный консультант Insilico Medicine.
Сегодня проблема рационального использования ресурсов в логистике становится ключевой, а значит, в транспортных системах приходится переосмысливать саму логику перевозок. Исследование белорусских инженеров из компании UST Inc. показывает, что недостаточно простого перехода на электротягу или возобновляемые источники энергии — важно уменьшить энергозатраты транспорта на единицу выполненной работы, то есть повысить удельную энергоэффективность. Подобный подход реализуется в транспортно-инфраструктурных комплексах uST.
Ученые попытались обобщить все имеющиеся данные о возможном существовании жизни за пределами Земли, от предполагаемых древних окаменелостей в метеоритах до всевозможных сообщений об «инопланетянах». В итоге отсеивание всего слишком сомнительного позволило собрать небольшой список действительно интересных фактов. В этом рейтинге лидируют метеориты Мерчисон и Оргей.
Международная группа биологов изучила механизм, который позволяет корням риса расти сквозь плотный грунт. Оказалось, растение перестраивает структуру своих клеток: внутренние слои корня становятся мягче и расширяются, а внешняя оболочка остается жесткой. Такая конструкция придает корню устойчивость и силу, необходимую для роста в сложной почве.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
