Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Непроводящий висмут с сурьмой оказался топологическим сверхпроводником
Ученые обнаружили способность непроводящего висмута, легированного сурьмой, проводить сверхпроводящий ток внутри своего объема. Это повысит надежность квантовых систем.
Группа исследователей из МФТИ, Университета Твенте и Амстердамского университета обнаружила способность одного из топологических материалов — непроводящего висмута, легированного сурьмой — проводить сверхпроводящий ток внутри своего объема. Топологические материалы — перспективные элементы будущих квантовых устройств благодаря защищенности своих проводящих свойств. Однако до сих пор не удавалось обнаружить такое поведение этих материалов не в поверхностном слое, а в объеме. Это значительно увеличит надежность квантовых устройств. Работа опубликована в Nature Materials.
Александр Голубов, заведующий лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ: «Полученный нами результат является, по мнению научного сообщества, первым шагом к реализации нового типа квантовых алгоритмов и должен ускорить проникновение топологических квантовых вычислений в технологии».
В последние годы область изучения топологических материалов стала очень актуальной. Так, в 2016 году Нобелевская премия по физике была дана Костерлицу, Таулесу и Холдейну за теоретические открытия топологических фазовых переходов и топологических фаз вещества.
Топологические изоляторы
Существует группа материалов, у которых в объеме — сложная структура энергетических зон. Благодаря этому на поверхности возникает проводящее состояние с жесткой зависимостью возможного направления движения электрона от направления его спина. Такие материалы называются топологически защищенными. Обычно электроны, двигаясь в каком-либо веществе, рассеиваются на примесях, поскольку не существует абсолютно чистых материалов. В случае топологически защищенных материалов такой процесс будет невозможен или, как говорят физики, запрещен, ведь, чтобы перевернуть направление движения, нужно будет перевернуть спин. А спин при отсутствии каких-то магнитных примесей или магнитных полей не будет переворачиваться.
Эта группа материалов называется также топологическими изоляторами. Изоляторами — потому что чаще всего в объеме эти материалы работают как изоляторы, они не проводят электрический ток. А на поверхности проводят. Топологическими — потому что именно их внутренняя топология делает поверхность проводящей.
«Это явление, наверное, более фундаментально, чем закон сохранения энергии и импульса. Потому что сохранение энергии в открытой системе работает с точностью до какого-то взаимодействия: поглотили фотон, у нас энергия изменилась. Импульс сохраняется опять же с точностью до рассеяния на примеси или на поверхности кристалла. Топологические изоляторы гораздо более устойчивы. Мы фактически отнимаем одну степень свободы у электронов. Можно менять электронную структуру внутри кристалла, но проводящее состояние на поверхности будет устойчивым, и его никак нельзя разрушить. Оно защищено и от рассеяния на примесях на поверхности», — поясняет соавтор работы, заведующий лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ, Александр Голубов.
Многообещающе выглядит применение таких материалов в квантовых вычислениях. В этой сфере есть одна проблема: квантовое состояние очень легко разрушить. Квантовая частица живет в неизменном состоянии до тех пор, пока не взаимодействует с окружением. Как только возникает взаимодействие с внешней средой, состояние квантовой частицы получает конечное время жизни. Топологическая защита квантовых состояний, по общему мнению, самая стабильная. Первые материалы с такими свойствами были получены несколько лет назад. Это полупроводники разного типа: висмут-селен, висмут-теллур и другие.
Эксперимент с дираковским полуметаллом
Новое слово в области создания топологически защищенных материалов — так называемые дираковские полуметаллы. Они характеризуются тем, что защищенные состояния могут быть даже в объеме вещества. Полуметаллами они называются, потому что занимают по электрическим свойствам промежуточное положение между металлами и полупроводниками.
Этот новый класс материалов еще более интересен для приложений, потому что поверхность подвержена любым химическим воздействиям: могут образоваться дефекты, которые все-таки нарушат эту топологическую защиту. В случае объемных топологически защищенных состояний разрушить их куда сложнее. Именно этот класс материалов на примере висмута, легированного сурьмой, изучался в рамках проделанного эксперимента. Было показано, что, действительно, топологическая защищенность присутствует в объеме пленки толщиной несколько сотен нанометров.
Ученые расположили на пленке из висмут-сурьмы контакты из сверхпроводящего ниобия. По сверхпроводящим электродам из ниобия в заданном направлении пропускался ток, который стимулировал движение электронов в висмут-сурьме от одного электрода к другому. Сверхпроводник позволил получить так называемый Джозефсоновский контакт. Эффект Джозефсона сводится к тому, что при разделении двух сверхпроводников каким-нибудь несверхпроводящим материалом через этот материал может течь сверхпроводящий бездиссипативный ток, который будет переноситься куперовскими парами электронов — носителями сверхпроводящего тока.
4π-периодичность тока
Все сверхпроводники характеризуются макроскопической фазой. Текущий через несверхпроводящий материал Джозефсоновский ток периодически зависит от разности фаз двух сверхпроводников. В квантовой механике все 2π-периодично, то есть любая волновая функция не меняется при изменении фазы на 2π. Текущий ток должен иметь синусоидальную зависимость от разности фаз.
«Эксперимент показал, что если барьером будет служить топологический изолятор, в котором степень свободы у электрона пропадает, ток будет 4π-периодичным, что интуитивно кажется невероятным», — рассказывает Александр Голубов.
«Направление тока фиксировано, значит, движение электронов возможно только в одну сторону. Система всегда стремится занять минимальный уровень энергии, поэтому естественным образом наша квантовая система занимает нижний энергетический уровень. В обычном случае электрон может двигаться вправо и влево, потому что оба направления спина разрешены. Но когда мы один спин убрали, то электронам ничего не остается, как двигаться в одну сторону. Получается кажущееся нарушение принципа квантовой механики, поскольку при изменении фазы на 2π-электрон проходит только полпути, а полный период будет 4π», — заключает Александр Голубов.
Обнаружение 4π-периодичности текущего через образец ток — прямое доказательство наличия топологической защищенности в объеме исследуемого материала.
Солнечная радиация в межпланетном пространстве — одна из серьезных проблем для пилотируемой космонавтики. Полет на Марс длится долгие месяцы, а прогнозировать крупное солнечное событие пока не представляется возможным. Тем не менее ученые нашли способ оперативного оповещения экипажа о начале такого события и дать космонавтам время укрыться от пиковой дозы. Как выяснилось, в этом может помочь уже успешно работающий на Марсе прибор.
Окаменевшие остатки могут поведать не только о самих вымерших организмах, иногда они хранят следы их взаимодействий. Разумеется, речь прежде всего о поедании одних другими. Известно немало подобных ихнофоссилий, оставленных на окаменевших мягких тканях динозавров. Новая статья дополнила их уникальными следами на костях. Оказалось, в мезозое ими не брезговали многобугорчатые млекопитающие и жуки-падальщики.
Ученые математически объяснили возможность обратного течения времени на микроуровне. Новое исследование показывает, что противоположные стрелы времени теоретически могут возникать в определенных квантовых системах.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
Астрономы рассчитали, сколько небесных тел могло прилететь в Солнечную систему от соседних звезд, расположенных в четырех световых годах от нас. Выяснилось, что такие объекты не только должны навещать нас, но и, вероятно, присоединяются ко множеству наших «местных» комет и астероидов. По расчетам, вокруг Солнца может обращаться около миллиона довольно крупных объектов из системы Альфы Центавра.
Современные технологии позволяют считывать ДНК с невероятной точностью, открывая новые возможности для изучения истории человечества. Ученые Пермского Политеха рассказали, что таит в себе удивительная молекула, почему не существует одинаковых людей, как с помощью «генетического кода» узнать о жизни предков, о том к каким заболеваниям у вас есть предрасположенность, и как генные инженеры борются с наследственностью.
В 2022-2025 годах страны Западной Европы попытались отказаться от природного газа из России. Автор новой работы показал, что получившиеся при этом результаты были во многом противоположны целям.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
Астрономы обнаружили, что почти треть всех наблюдаемых галактик во Вселенной объединены в пять самых широкомасштабных структур — галактические сверхскопления. На составленной учеными трехмерной карте одно особенно выделяется своими рекордными размерами: простирается на миллиард с лишним световых лет.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии