Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Машинное обучение поможет увеличить объем добычи нефти
Исследователи Сколтеха совместно с коллегами из компании «Газпром нефть» разработали модель, основанную на реальных полевых данных, с помощью которой можно предсказывать объем добычи нефти при закачивании горизонтальных скважин с использованием многостадийного гидравлического разрыва пласта (ГРП). Созданная модель имеет большие перспективы коммерческого применения и способна обеспечить значительное увеличение объемов добычи за счет использования оптимизированной технологии ГРП.
Результаты исследования, проводившегося при поддержке Научно-Технического центра «Газпром нефти» и «Газпромнефть-Хантос», опубликованы в Journal of Petroleum Science and Engineering. Гидравлический разрыв пласта является одним из наиболее широко используемых методов интенсификации добычи на нефтяных и газовых скважинах. Суть метода заключается в том, что в пласт под высоким давлением закачивается жидкость с твердыми частицами, что приводит к образованию трещин и увеличению притока к скважине и тем самым позволяет увеличить охват области, из которой добываются углеводороды.
В течение последних нескольких десятилетий техническая сложность работ по ГРП возросла настолько, что для ее реализации требуется масштабное проектирование и предварительное моделирование с использованием сложных многомодульных симуляторов. «При этом одной из серьезных проблем при калибровке, верификации и валидации моделей на реальных данных по-прежнему остается обеспечение соответствия между результатами работы симуляторов и реальными промысловыми данными.
Кроме того, для объединения данных симулятора ГРП и реальных промысловых данных необходимо увязать модель проекта гидравлического разрыва пласта с симулятором добычи, что еще больше усложняет задачу и увеличивает неопределенность.
Мы решили пойти по другому пути и напрямую проанализировать промысловые данные по ГРП совместно с данными по добыче нефти, которые служат показателем успеха при применении технологии гидравлического разрыва пласта», − рассказал инициатор данного проекта, руководитель Лаборатории по моделированию многофазных систем (M-Phase Lab) Центра добычи углеводородов Сколтеха (CHR) профессор Андрей Осипцов.

Исследователи M-Phase Lab совместно с коллегами из Центра Сколтеха по научным и инженерным вычислительным технологиям для задач с большими массивами данных (CDISE) во главе с руководителем научной группы Advanced Data Analytics in Science and Engineering (ADASE group) профессором Евгением Бурнаевым изучили возможность решения этой задачи при помощи основанного на реальных данных подхода к проектированию ГРП с использованием технологий машинного обучения.
Ключевым элементом этого проекта, стартовавшего в 2018 году, является цифровая база данных о гидравлического разрыва пласта и объемах добычи нефти, где собрана информация приблизительно по шести тысячам скважинам и 20 месторождениям Западной Сибири в периметре компании «Газпром нефть». Каждая точка базы данных содержит 92 переменных по пласту, скважине и проектным параметрам ГРП, а также 16 параметров по добыче нефти.
«Нам удалось собрать и систематизировать огромную базу данных по выполненным проектам ГРП. Применяя методы машинного обучения к этой базе данных, мы уже можем достаточно точно с учетом параметров процесса предсказывать результаты гидравлического разрыва пласта. Но нам предстоит решить и еще одну непростую задачу – разработать рекомендации по выбору параметров процесса ГРП с учетом результатов моделирования», − сообщил один из авторов работы профессор Бурнаев.
Старший инженер и руководитель проекта M-Phase Lab, один из авторов статьи Альберт Вайнштейн отметил, что проект «с самого начала был очень амбициозным в силу высокой меры неопределенности в реальных данных и разноплановости источников данных».
«Я думаю, что разработка цифровой базы данных позволит нам проверить различные гипотезы, что, в свою очередь, поможет выявить многие скрытые закономерности процессов ГРП. В частности, важно установить, при каком объеме закачиваемого проппанта прекращается рост общего объема добычи. В зависимости от конкретных условий может закачиваться различное количество проппанта, но общий подход состоит в том, чтобы на каждой стадии ГРП вводить в пласт 60 тонн проппанта. Используя модель машинного обучения и статистические данные, можно подтвердить, либо опровергнуть эту гипотезу», − сказал аспирант Сколтеха, стажер-исследователь M-Phase Lab Антон Морозов.
Ученые уже подготовили и передали индустриальному партнеру свои рекомендации по пилотному проекту ГРП нефтяной скважины с использованием технологий машинного обучения. Они надеются, что в ходе предстоящих опытно-промышленных испытаний будут продемонстрированы потенциал и возможности их подхода к оптимизации ГРП.
«Необходимо активно использовать промысловые данные, но делать это нужно осторожно, поскольку это очень чувствительная информация, которая требует использования специальных процедур хранения и обработки. Эту работу мы вряд ли смогли бы выполнить без всесторонней поддержки нашего технологического партнера − Научно-Технического центра «Газпром нефть», а также крупнейшей производственной структуры оператора − «Газпромнефть-Хантос», которая в данном проекте является нашим конечным заказчиком», − сказал Осипцов.
«Наш подход, основанный на данных, открывает возможности для создания рекомендательной системы, которая будет выдавать инженерам DESC рекомендации по оптимальному набору параметров ГРП или, по крайней мере, информацию о более узких диапазонах для поиска нужного набора проектных параметров», − отметил в заключение Осипцов.
Представитель индустриального партнера Григорий Падерин, руководитель направления и руководитель проекта «Кибер ГРП (Оптимальная модель ГРП)» Научно-Технического центра «Газпром нефти», отметил: «Данный проект является не только уникальным научным вызовом, направленным на оптимизацию операций ГРП, но также очень важен для цифровизации процессов компании в целом. Он позволяет по-новому взглянуть на ценность наших данных, пересмотреть отношение к способам их сбора, хранения и обработки».
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
В Олдувайском ущелье на севере Танзании ученые обнаружили скелет слона возрастом 1,78 миллиона лет, а рядом с ним — необычные для того времени каменные орудия. Авторы нового исследования полагают, что им удалось найти древнейшее место разделки гигантской добычи.
Астрономы обнаружили еще одно неожиданное последствие недавнего эксперимента с астероидом Диморф: его крупный и массивный «хозяин» Дидим стал медленнее вращаться вокруг своей оси. Ученые подозревают, что на него так повлияли разлетевшиеся обломки.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
В Олдувайском ущелье на севере Танзании ученые обнаружили скелет слона возрастом 1,78 миллиона лет, а рядом с ним — необычные для того времени каменные орудия. Авторы нового исследования полагают, что им удалось найти древнейшее место разделки гигантской добычи.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
