• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
17.02.2020
Сколтех
18 156

Машинное обучение используют для решения проблем квантовой оптики

4.1

Ученые Сколтеха предложили использовать нейросетевые алгоритмы для квантовой томографии — для восстановления исходного состояния по измеренным данным.

Машинное обучение используют для решения проблем квантовой оптики / ©enginclub.ru / Автор: Анастасия Кожевникова

Методы машинного обучения, ставшие в последнее время универсальным инструментом интеллектуального анализа данных, продолжают активную экспансию во все новые области. Изначально основанные на распознавании изображений, эти методы позволяют эффективно уменьшать размерность многомерных массивов данных, что делает методику крайне привлекательной в контексте решения задач классической и квантовой физики многих тел. В своей недавней работе ученые Сколтеха предложили использовать нейросетевые алгоритмы для квантовой томографии, иными словами для решения обратной задачи, то есть задачи о восстановлении исходного состояния по измеренным данным.

Несовершенство измерительной аппаратуры, а также случайные ошибки, неизменно сопутствующие любому акту измерения, делают квантовую томографию чрезвычайно сложной процедурой даже тогда, когда нам полностью известны модель, описывающая работу измерительного устройства, и то, как было приготовлено входное состояние. В тесном сотрудничестве с коллегами из Центра квантовых технологий МГУ исследователи из Сколтеха продемонстрировали, что использование нейросетевых алгоритмов существенно улучшает точность реконструкции квантового состояния. Результаты исследований опубликованы в одном из наиболее авторитетных научных изданий — журнале npj Quantum Information, входящем в семейство Nature.

Аспирант Сколтеха Адриано Макароне Палмьери, ведущий автор исследования, описывает развитый в работе подход, как новую методологию, позволяющую получить более глубокое понимание. Прежде чем влиться в коллектив Сколтеха, Адриано изучал физику и получил степень магистра в Болонском университете, широко известном не только в Италии, но и далеко за ее пределами. К совместной работе над проектом Адриано привлек своего коллегу из Милана Федерико Бианки, работающего сейчас в Университете Боккони.

Федерико, получивший первоклассное образование и степень доктора в области машинного обучения и систем искусственного интеллекта в Миланском университете Бикокка, характеризует полученные результаты как убедительный пример научного открытия в области квантовой физики, полученного на основе интеллектуального анализа экспериментальных данных. Несмотря на то, что до того, как присоединиться к проекту, Федерико не сталкивался с задачами квантовой физики, его опыт программиста-исследователя позволил иначе взглянуть на имеющиеся экспериментальные данные. Адриано и Федерико тесно взаимодействовали с другими сотрудниками научной группы Deep Quantum Labs Сколтеха Джейкоба Биамонте, включая Дмитрия Юдина.

Он описывает результаты проекта как первый важный шаг к практическому использованию нейросетевых алгоритмов в экспериментальных задачах квантовой томографии с учетом погрешностей, неизбежно сопровождающих любой измерительный процесс, и зашумленности полученных данных. Дмитрий добавляет, что квантовая томография используется повсеместно для калибровки и тестирования работы квантовых устройств.

Исследовательская работа в этом направлении была бы невозможна без поддержки со стороны коллег-экспериментаторов из Центра квантовых технологий МГУ, а именно аспиранта Егора Ковлакова и его научных руководителей Станислава Страупе и Сергея Кулика. На протяжении последних лет они активно исследуют различные методы квантовой томографии. Станислав отмечает, что к их удивлению глубокое обучение превзошло доступные на сегодняшний день методы в реальном эксперименте. Научная группа из МГУ занималась подготовкой и измерением квантовых состояний высокой размерности на экспериментальной платформе, основанной на пространственных состояниях фотонов.

Экспериментальные ошибки в подготовке состояний на входе и измерениях неизбежно сказываются на результатах, и ситуация становится хуже с увеличением размерности. В то же время дальнейшее увеличение размерности доступных квантовых состояний чрезвычайно важно для квантовых протоколов связи и особенно для квантовых вычислений — вот, где полезны методы машинного обучения.

Исследователи Сколтеха  обучили глубокую нейронную сеть проводить анализ зашумленных экспериментальных данных и эффективно обучили шумоподавлению, значительно улучшая качество восстановления квантового состояния. 
Обнадеживающие результаты, полученные научными коллективами Сколтеха и МГУ, позволяет им с высокой уверенностью заявить, что методы машинного обучения будут играть важную роль в будущем развитии квантовых технологий. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Позавчера, 11:32
Александр Березин

Falcon 9 Block 5 впервые за три сотни запусков дал частично неудачный полет. Ракета выводила 20 спутников компании SpaceX, с 15 связь уже пропала, еще пять могут быть потеряны в ближайшее время.

Вчера, 11:29
Татьяна

Все клеточные организмы ученые ведут от гипотетического предка — LUCA. Существует масса предположений и расчетов о том, как он был устроен, где и когда возник. В новой работе исследователи из Великобритании попытались ответить на эти вопросы.

Позавчера, 14:55
Татьяна

Американские астронавты давно жалуются на систему ассенизации в скафандрах, которая представляет собой просто большой подгузник. Хватает его максимум на восемь часов, есть риск развития опрелостей и инфекций. К тому же в костюме мало запасов питьевой воды. Чтобы решить эти проблемы, ученые предложили более эффективный способ утилизации продуктов метаболизма.

Позавчера, 11:32
Александр Березин

Falcon 9 Block 5 впервые за три сотни запусков дал частично неудачный полет. Ракета выводила 20 спутников компании SpaceX, с 15 связь уже пропала, еще пять могут быть потеряны в ближайшее время.

Вчера, 11:29
Татьяна

Все клеточные организмы ученые ведут от гипотетического предка — LUCA. Существует масса предположений и расчетов о том, как он был устроен, где и когда возник. В новой работе исследователи из Великобритании попытались ответить на эти вопросы.

11 июля
Татьяна

Открытая недавно планета LHS 1140 b заинтересовала ученых как потенциально обитаемая. В новой работе канадские исследователи подтвердили, что это, скорее всего, мир с теплым океаном, окутанным насыщенной азотом атмосферой.

25 июня
Игорь Байдов

Ученые из Китая и Бельгии воссоздали в лаборатории условия, существовавшие на Меркурии четыре миллиарда лет назад, и выяснили, что они были идеальными для образования слоя алмазов, который с течением времени становился лишь толще.

21 июня
Nadya

Земля начала формироваться примерно 4,5 миллиарда лет назад. Чтобы понять, как это происходило в ранние периоды развития нашей планеты, ученые ищут образцы древних горных пород. Одну из таких, возрастом почти 3,5 миллиарда лет, обнаружили рядом с городом Колли в Австралии.

1 июля
Александр Березин

Необычный биологический вид, по оценке авторов новой научной работы, пригоден для заселения четвертой планеты без каких-либо предварительных условий — уже в том виде, в котором он существует сейчас. Поскольку речь идет о фотосинтетическом организме, он способен нарабатывать существенное количество кислорода. Интересно, что кандидат на терраформирование Марса сохранил жизнеспособность после месяца в жидком азоте.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно