Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Машинное обучение используют для решения проблем квантовой оптики
Ученые Сколтеха предложили использовать нейросетевые алгоритмы для квантовой томографии — для восстановления исходного состояния по измеренным данным.
Методы машинного обучения, ставшие в последнее время универсальным инструментом интеллектуального анализа данных, продолжают активную экспансию во все новые области. Изначально основанные на распознавании изображений, эти методы позволяют эффективно уменьшать размерность многомерных массивов данных, что делает методику крайне привлекательной в контексте решения задач классической и квантовой физики многих тел. В своей недавней работе ученые Сколтеха предложили использовать нейросетевые алгоритмы для квантовой томографии, иными словами для решения обратной задачи, то есть задачи о восстановлении исходного состояния по измеренным данным.
Несовершенство измерительной аппаратуры, а также случайные ошибки, неизменно сопутствующие любому акту измерения, делают квантовую томографию чрезвычайно сложной процедурой даже тогда, когда нам полностью известны модель, описывающая работу измерительного устройства, и то, как было приготовлено входное состояние. В тесном сотрудничестве с коллегами из Центра квантовых технологий МГУ исследователи из Сколтеха продемонстрировали, что использование нейросетевых алгоритмов существенно улучшает точность реконструкции квантового состояния. Результаты исследований опубликованы в одном из наиболее авторитетных научных изданий — журнале npj Quantum Information, входящем в семейство Nature.
Аспирант Сколтеха Адриано Макароне Палмьери, ведущий автор исследования, описывает развитый в работе подход, как новую методологию, позволяющую получить более глубокое понимание. Прежде чем влиться в коллектив Сколтеха, Адриано изучал физику и получил степень магистра в Болонском университете, широко известном не только в Италии, но и далеко за ее пределами. К совместной работе над проектом Адриано привлек своего коллегу из Милана Федерико Бианки, работающего сейчас в Университете Боккони.
Федерико, получивший первоклассное образование и степень доктора в области машинного обучения и систем искусственного интеллекта в Миланском университете Бикокка, характеризует полученные результаты как убедительный пример научного открытия в области квантовой физики, полученного на основе интеллектуального анализа экспериментальных данных. Несмотря на то, что до того, как присоединиться к проекту, Федерико не сталкивался с задачами квантовой физики, его опыт программиста-исследователя позволил иначе взглянуть на имеющиеся экспериментальные данные. Адриано и Федерико тесно взаимодействовали с другими сотрудниками научной группы Deep Quantum Labs Сколтеха Джейкоба Биамонте, включая Дмитрия Юдина.
Он описывает результаты проекта как первый важный шаг к практическому использованию нейросетевых алгоритмов в экспериментальных задачах квантовой томографии с учетом погрешностей, неизбежно сопровождающих любой измерительный процесс, и зашумленности полученных данных. Дмитрий добавляет, что квантовая томография используется повсеместно для калибровки и тестирования работы квантовых устройств.
Исследовательская работа в этом направлении была бы невозможна без поддержки со стороны коллег-экспериментаторов из Центра квантовых технологий МГУ, а именно аспиранта Егора Ковлакова и его научных руководителей Станислава Страупе и Сергея Кулика. На протяжении последних лет они активно исследуют различные методы квантовой томографии. Станислав отмечает, что к их удивлению глубокое обучение превзошло доступные на сегодняшний день методы в реальном эксперименте. Научная группа из МГУ занималась подготовкой и измерением квантовых состояний высокой размерности на экспериментальной платформе, основанной на пространственных состояниях фотонов.
Экспериментальные ошибки в подготовке состояний на входе и измерениях неизбежно сказываются на результатах, и ситуация становится хуже с увеличением размерности. В то же время дальнейшее увеличение размерности доступных квантовых состояний чрезвычайно важно для квантовых протоколов связи и особенно для квантовых вычислений — вот, где полезны методы машинного обучения.
Исследователи Сколтеха обучили глубокую нейронную сеть проводить анализ зашумленных экспериментальных данных и эффективно обучили шумоподавлению, значительно улучшая качество восстановления квантового состояния.
Обнадеживающие результаты, полученные научными коллективами Сколтеха и МГУ, позволяет им с высокой уверенностью заявить, что методы машинного обучения будут играть важную роль в будущем развитии квантовых технологий.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Ученые впервые на практике реализовали знаменитый мысленный эксперимент с «подвижной щелью», который обсуждали Бор и Эйнштейн почти 100 лет назад. Опыт с отдельным атомом показал, что попытка отследить путь частицы неизбежно разрушает ее волновые свойства.
Новые материалы позволяют построить атомные реакторы и для полетов в космос, и для получения зеленой и более дешевой электроэнергии на Земле. Технологии, лежащие в основе их создания, помогают даже выращивать биологические ткани для замены поврежденных. Мы поговорили обо всем этом с научным руководителем направления «Материалы и технологии» Госкорпорации «Росатом», первым заместителем директора частного учреждения «Наука и инновации» Алексеем Дубом.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Зоологи из Университета Нового Южного Уэльса выяснили, что слоны Ботсваны реагируют на жужжание пчел гораздо спокойнее, чем их сородичи в Восточной Африке. Это открытие осложняет внедрение экологичных методов защиты урожая: то, что пугает животных в Кении, здесь может не сработать.
Ученые впервые на практике реализовали знаменитый мысленный эксперимент с «подвижной щелью», который обсуждали Бор и Эйнштейн почти 100 лет назад. Опыт с отдельным атомом показал, что попытка отследить путь частицы неизбежно разрушает ее волновые свойства.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
