Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Машинное обучение используют для решения проблем квантовой оптики
Ученые Сколтеха предложили использовать нейросетевые алгоритмы для квантовой томографии — для восстановления исходного состояния по измеренным данным.
Методы машинного обучения, ставшие в последнее время универсальным инструментом интеллектуального анализа данных, продолжают активную экспансию во все новые области. Изначально основанные на распознавании изображений, эти методы позволяют эффективно уменьшать размерность многомерных массивов данных, что делает методику крайне привлекательной в контексте решения задач классической и квантовой физики многих тел. В своей недавней работе ученые Сколтеха предложили использовать нейросетевые алгоритмы для квантовой томографии, иными словами для решения обратной задачи, то есть задачи о восстановлении исходного состояния по измеренным данным.
Несовершенство измерительной аппаратуры, а также случайные ошибки, неизменно сопутствующие любому акту измерения, делают квантовую томографию чрезвычайно сложной процедурой даже тогда, когда нам полностью известны модель, описывающая работу измерительного устройства, и то, как было приготовлено входное состояние. В тесном сотрудничестве с коллегами из Центра квантовых технологий МГУ исследователи из Сколтеха продемонстрировали, что использование нейросетевых алгоритмов существенно улучшает точность реконструкции квантового состояния. Результаты исследований опубликованы в одном из наиболее авторитетных научных изданий — журнале npj Quantum Information, входящем в семейство Nature.
Аспирант Сколтеха Адриано Макароне Палмьери, ведущий автор исследования, описывает развитый в работе подход, как новую методологию, позволяющую получить более глубокое понимание. Прежде чем влиться в коллектив Сколтеха, Адриано изучал физику и получил степень магистра в Болонском университете, широко известном не только в Италии, но и далеко за ее пределами. К совместной работе над проектом Адриано привлек своего коллегу из Милана Федерико Бианки, работающего сейчас в Университете Боккони.
Федерико, получивший первоклассное образование и степень доктора в области машинного обучения и систем искусственного интеллекта в Миланском университете Бикокка, характеризует полученные результаты как убедительный пример научного открытия в области квантовой физики, полученного на основе интеллектуального анализа экспериментальных данных. Несмотря на то, что до того, как присоединиться к проекту, Федерико не сталкивался с задачами квантовой физики, его опыт программиста-исследователя позволил иначе взглянуть на имеющиеся экспериментальные данные. Адриано и Федерико тесно взаимодействовали с другими сотрудниками научной группы Deep Quantum Labs Сколтеха Джейкоба Биамонте, включая Дмитрия Юдина.
Он описывает результаты проекта как первый важный шаг к практическому использованию нейросетевых алгоритмов в экспериментальных задачах квантовой томографии с учетом погрешностей, неизбежно сопровождающих любой измерительный процесс, и зашумленности полученных данных. Дмитрий добавляет, что квантовая томография используется повсеместно для калибровки и тестирования работы квантовых устройств.
Исследовательская работа в этом направлении была бы невозможна без поддержки со стороны коллег-экспериментаторов из Центра квантовых технологий МГУ, а именно аспиранта Егора Ковлакова и его научных руководителей Станислава Страупе и Сергея Кулика. На протяжении последних лет они активно исследуют различные методы квантовой томографии. Станислав отмечает, что к их удивлению глубокое обучение превзошло доступные на сегодняшний день методы в реальном эксперименте. Научная группа из МГУ занималась подготовкой и измерением квантовых состояний высокой размерности на экспериментальной платформе, основанной на пространственных состояниях фотонов.
Экспериментальные ошибки в подготовке состояний на входе и измерениях неизбежно сказываются на результатах, и ситуация становится хуже с увеличением размерности. В то же время дальнейшее увеличение размерности доступных квантовых состояний чрезвычайно важно для квантовых протоколов связи и особенно для квантовых вычислений — вот, где полезны методы машинного обучения.
Исследователи Сколтеха обучили глубокую нейронную сеть проводить анализ зашумленных экспериментальных данных и эффективно обучили шумоподавлению, значительно улучшая качество восстановления квантового состояния.
Обнадеживающие результаты, полученные научными коллективами Сколтеха и МГУ, позволяет им с высокой уверенностью заявить, что методы машинного обучения будут играть важную роль в будущем развитии квантовых технологий.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
