• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
26.07.2023, 13:07
ФизТех
1,5 тыс

Физики узнали, как контролировать намагниченность на наноуровне

❋ 4.5

Ученые из МФТИ и СПбГУ с европейскими коллегами научились определять направление магнитного момента атомов лантаноидов в приповерхностных индивидуальных слоях кристаллов по спектру фотоэмиссии. С помощью разработанного метода ученые смогут надежно осуществлять контроль за направлением магнитного момента в тонкопленочных монокристаллических соединениях лантаноидов в зависимости от температуры и структуры соединений. Предложенный подход будет полезен при разработке широко круга технологически значимых гетероструктур и слоистых нанообъектов, мономолекулярных магнитов, а также магнитно активных супрамолекулярных соединений, содержащих лантаноиды.

Физики узнали, как контролировать намагниченность на наноуровне
Физики узнали, как контролировать намагниченность на наноуровне / ©Getty images / Автор: Анастасия Кожевникова

Работа опубликована в The Journal of Physical Chemistry Letters. Лантаноиды — это семейство редкоземельных металлов, обладающих большим магнитным моментом. Сегодня лантаноиды находят широкое применение в производстве электроники, магнитов, лазеров, оптического волокна, металлургии, химической и ядерной промышленности и множестве других областей. По химическим свойствам лантаноиды очень схожи между собой, что объясняется строением электронных оболочек их атомов. В соединениях лантаноиды в большинстве случаев оказываются трехвалентными. По мере увеличения заряда ядра внешние 5d- и 6s-электронные оболочки остаются незаполненными, но происходит заполнение сильно локализованных 4f-электронных орбиталей.

Электроны 4f-оболочки и определяют магнитные свойства лантаноидов. Поскольку электроны частично заполняют 4f-оболочку, ее форма оказывается несимметричной и возникает магнитный момент. В соединениях на эту электронную оболочку действует электрическое поле самого кристалла, и при низкой температуре она поворачивается, чтобы минимизировать энергию. С ней поворачивается и магнитный момент. Когда температура растет, повышается вероятность перехода электронов на более высокие энергетические уровни — меняется форма оболочки, ее ориентация и среднее направление магнитного момента. Ученым важно знать зависимость направления от температуры и строения материалов, чтобы создавать наноструктуры из лантаноидов с заданными магнитными параметрами. Такие структуры, например, применяются в спиновой электронике — когда информацию переносит не электрический ток, а ток спинов.

В предыдущей работе физики из Центра перспективных методов мезофизики и нанотехнологий МФТИ и СПбГУ показали, что наклон магнитных моментов сильно влияет на спектр фотоэмиссии 4f-электронов. Фотоэмиссия — физический метод исследования, основанный на выбивании светом электронов с поверхности материала. Эти электроны попадают в анализатор, который измеряет их энергию. Ученые предположили, что по фотоэмиссионным спектрам, снятым при разных температурах, можно определить наклон магнитных моментов и его температурную зависимость.

Первый автор работы, ведущий научный сотрудник лаборатории фотоэлектронной спектроскопии квантовых функциональных материалов МФТИ Дмитрий Усачев рассказывает: «Фотоэмиссия хорошо подходит для изучения слоистых двумерных систем. Нашей задачей было разработать методологию, которая бы позволяла, анализируя данные фотоэмиссии, получить информацию о магнетизме. В частности, о том, куда направлены магнитные моменты в приповерхностной области кристалла.

В качестве модельной системы мы взяли два материала, у которых в объеме магнитные моменты могут поворачиваться с температурой: изменяем температуру — меняется направление магнитных моментов. Мы хотели проследить это изменение, анализируя 4f-электроны, которые как раз обеспечивают весь магнетизм в этих системах. И оказалось, что да: можем проследить, если провести довольно точные измерения фотоэмиссии 4f-оболочки».

В новом исследовании физики измеряли фотоэмиссию систем гольмий-родий-2-кремний-2 (HoRh2Si2) и диспрозий-родий-2-кремний-2 (DyRh2Si2). Анализируя спектры, полученные при различных температурах, ученые смогли проследить изменение наклона магнитного момента в приповерхностных слоях кристаллов.

©Пресс-служба МФТИ

Сначала физики исследовали магнитные свойства в объеме кристаллов, в частности, измеряли зависимость магнитной восприимчивости от температуры. Ниже 11,5 кельвина в кристалле соединения гольмия возникала температурная зависимость наклона магнитного момента от оси кристалла. По экспериментальным данным ученые построили модель, описывающую электрическое поле кристалла и магнитные свойства материала. Затем параметры модели изменили для расчетов свойств на поверхности кристалла. Оказалось, что теоретически наклон магнитных моментов на поверхности может значительно отличаться от наклона в объеме.

Затем исследователи измерили фотоэмиссионные спектры кристаллов гольмия и диспрозия. Интенсивность спектра электронов некоторых энергетических уровней резко менялась при 11,5 кельвина. Именно при этой температуре возникало изменение наклона в объеме кристалла. Чтобы выстроить полную связь между фотоэмиссией и наклоном магнитных моментов, физики рассмотрели две модели: в первой параметры кристаллического поля вблизи поверхности считались такими же, как в объеме, исследованном в первой части работы, а во второй использовались расчетные параметры для поверхности. Оказалось, что только во втором случае рассчитанные температурные зависимости спектров отлично совпадали с измеренными. Таким образом ученые показали, что, имея данные фотоэмиссии, можно рассчитать наклон магнитных моментов при заданной температуре.

Более того, отклонение моментов от нормали в верхних атомных слоях зависит от того, какими атомами образована поверхность. В случае когда кристалл оканчивался слоем кремния, магнитные моменты в приповерхностном слое гольмия отклонялись меньше от нормали, чем в объеме кристалла, а когда на поверхности оказывался слой гольмия, спектры фотоэмиссии указывали на более сильное отклонение моментов. Такое поведение объясняется различным электрическим полем в объеме и на поверхности кристалла. Это знание может быть важным при изготовлении пленок и гетероструктур из подобных материалов.

Дмитрий Усачев добавляет: «Как правило, спектры 4f-мультиплетов в широком энергетическом диапазоне считаются хорошо изученными и поэтому мало привлекают внимание ученых к изучению их тонкой структуры. Наш посыл был — показать необходимость детального анализа таких спектров, которые, очевидно, содержат полезную информацию о магнитных свойствах 4f-систем. В дальнейшем мы планируем повысить чувствительность метода, чтобы изучать материалы с малыми примесями лантаноидов. Также, если мы будем делать какой-то интерфейс, соединять разные материалы, то на интерфейсе направление момента тоже может отличаться от того, что в объеме, и, возможно, в некоторых применениях нужно будет учитывать этот факт».

«На данный момент мы готовим эксперименты по изучению магнитной системы данного материала при помощи спинчувствительной сканирующей туннельной спектроскопии, которая была недавно реализована в нашем центре», — рассказывает Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ.

В работе, кроме сотрудников Центра перспективных методов мезофизики и нанотехнологий МФТИ, принимали участие их коллеги из СПбГУ, МИСиС, ВНИИ автоматики им. Н. Л. Духова,Технического университета Дрездена, Берлинского центра материалов и энергии им. Гельмгольца и Франкфуртского университета имени Гете (Германия), а также Международного физического центра Доностии и Баскского фонда науки (Испания). 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
23 декабря, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

23 декабря, 10:17
Максим Абдулаев

Группа исследователей опровергла классическую теорию о случайности вымирания видов на примере морских хищников. Анализ эволюции акул и скатов за последние 145 миллионов лет показал, что риск исчезновения вида напрямую зависит от времени его существования: «новички» погибают гораздо чаще, чем эволюционные долгожители. Кроме того, ученые установили, что знаменитый астероид, погубивший динозавров, нанес океану не такой сильный удар, как последующее изменение климата.

23 декабря, 14:06
Андрей Серегин

Давно известно, что видеоигры имеют массу не только негативных, но и положительных последствий. Ученые из Великобритании выяснили, что яркие и позитивные игры без насилия могут вызвать у молодых игроков чувство детского интереса.

23 декабря, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

19 декабря, 15:22
Андрей Серегин

Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.

19 декабря, 20:02
Evgenia Vavilova

Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

17 декабря, 14:19
Игорь Байдов

На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.

29 ноября, 12:42
Александр Березин

Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно