Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики укротили недоступное излучение
Ученым из Московского физико-технического института и Института физики микроструктур РАН удалось решить проблему генерации лазерного излучения дальнего инфракрасного диапазона в полупроводниковых структурах. Ключом к ее решению было использование квантовых ям теллурида кадмия-ртути. Эти соединения были давно известны в фотонике и электронике, однако их ключевая особенность для лазерных приложений оставалась нераскрытой.
Работа опубликована в журнале ACS Photonics.
В полупроводниковом диодном лазере излучение возникает при взаимном уничтожении электронов проводимости и дырок — вакантных мест на заполненных электронных орбиталях. Этот процесс называется излучательной рекомбинацией. Однако излучение света при рекомбинации электрона и дырки не является единственно возможным исходом. Наряду с испусканием фотона высвобождающаяся энергия может уйти на раскачку колебаний решетки кристалла.
Но наиболее критическим процессом рекомбинации является такой, где энергия электрон-дырочной пары тут же уходит на нагрев других электронов, вместо полезной генерации света. Такой процесс «растраты» электрон-дырочных пар в тепло называют оже-рекомбинацией — в честь французского физика Пьера Оже, впервые изучившего этот эффект.
Скорость губительного оже-процесса драматически возрастает в полупроводниках с малым энергетическим расстоянием между уровнями электронов и дырок (говоря научными терминами, с малой шириной запрещенной зоны). Можно сказать, чем ближе друг к другу электрон и дырка (по шкале энергий), тем сильнее их желание ко взаимной аннигиляции с выделением тепла. Однако полупроводники именно с малой шириной запрещенной зоны требуются для создания лазеров дальнего инфракрасного диапазона, излучающих на длинах волн в десятки микрон. И именно эти лазеры востребованы в исследованиях биологических объектов и задачах газовой спектроскопии.
Усиление безызлучательной оже-рекомбинации и снижение эффективности полупроводникового лазера с ростом длины волны, однако, не являются законами природы, а следуют лишь из нашего опыта. Нет фундаментального запрета на создание полупроводниковой структуры, излучающей в дальнем инфракрасном диапазоне и не подверженной оже-процессу.
Более того, требования к спектру электронов и дырок, обеспечивающему полный запрет безызлучательной рекомбинации, известны с работ Поля Дирака об электронах и позитронах. А именно, электроны и дырки должны обладать одинаковой массой при малых энергиях и вести себя подобно безмассовым частицам — при больших. Но все попытки воплотить эти идеи в реальном материале до сих пор терпели неудачу.
Исследователи из МФТИ и Института физики микроструктур РАН в Нижнем Новгороде обнаружили, что необходимыми для лазерных приложений свойствами электроны и дырки обладают в квантовых ямах теллурида кадмия-ртути. Этот материал имеет долгую историю: он уже более полувека используется для создания тепловизоров, а около десяти лет назад он вызвал бум в топологической физике из-за особых свойств электронов на его краях.
«Долгое время лазерные перспективы теллурида кадмия-ртути не вызывали большого энтузиазма, а на “дираковскую” форму электрон-дырочного спектра никто не обращал внимания. Физики-лазерщики ХХ века работали с широкими квантовыми ямами с большим содержанием кадмия — это далеко не оптимальный состав, по нашим расчетам, — поэтому желаемое явление не было открыто. Когда технология XXI века позволила выращивать узкие квантовые ямы, то область заполнили физики-топологи, внимание которых было приковано к краевым электронам.
То, что творится в плоскости ямы, а не на ее краю, оставалось без должного внимания. И лишь нашей группе удалось обнаружить желаемое подавление оже-рекомбинации в узких квантовых ямах», — рассказывает Дмитрий Свинцов, соавтор исследования, заведующий лабораторией оптоэлектроники двумерных материалов МФТИ.
Эксперименты на квантовых ямах теллурида ртути, выращенных в Институте физики полупроводников РАН (г. Новосибирск), уже подтвердили возможность лазерной генерации с длиной волны до 20 микрон. А выполненные в работе расчеты «остаточных» рекомбинационных процессов показывают, что это не предел, и длину волны излучения можно повысить до 50 микрон. Диапазон длин волн от 30 до 50 микрон является наиболее «запретным» для существующих полупроводниковых лазеров на основе элементов III и V групп таблицы Менделеева из-за сильного самопоглощения.
Но и этот негативный эффект — как и оже-рекомбинация — сильно ослаблен в теллуриде ртути, на этот раз из-за большой массы атомов, составляющих кристаллическую решетку. Таким образом, у изучаемых квантовых ям есть все перспективы закрыть последние «белые пятна» на шкале электромагнитных излучений.
«Естественно, в сфере лазерной техники у квантовых ям теллурида ртути есть конкуренты. Наиболее серьезными являются квантовые каскадные лазеры на основе арсенида галлия. Они не используют электрон-дырочной рекомбинации, а основаны на исключительно электронных переходах. Такая “смена парадигмы” требует очень сложной конструкции лазера и, как следствие, огромной цены — один каскадный лазер стоит более 6 тысяч долларов. Теллурид ртути позволяет продлить работоспособность устоявшейся, предельно простой и дешевой конструкции лазерного диода вплоть до дальнего инфракрасного диапазона», — добавляет Дмитрий Свинцов.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
Палеонтологи описали крупнейшее в мире скопление следов динозавров: более 16 000 вмятин на площади 7500 квадратных метров. Ученые считают, что эта территория была не просто местом случайных прогулок, а оживленной трассой, где динозавры организованно мигрировали вдоль берега древнего озера.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
