Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики раскрыли тайну исчезновения частиц и античастиц в графене
Ученые из МФТИ и Японии смогли объяснить парадоксальное явление взаимного уничтожения частиц и античастиц в графене, которое известно специалистам как оже-рекомбинация.
Исследователи из МФТИ и Университета Тохоку (Япония) смогли объяснить парадоксальное явление взаимного уничтожения частиц и античастиц в графене, которое известно специалистам как оже-рекомбинация. Долгое время оно считалось запрещенным фундаментальными физическими законами сохранения импульса и энергии, но упорно наблюдалось в экспериментах. Теоретическое обоснование этого процесса представляло до недавнего времени одну из сложнейших загадок физики твердого тела. Результаты исследования опубликованы в журнале Physical Review B.
В 1928 году Поль Дирак теоретически предсказал, что у электрона существует двойник, не отличающийся ничем, кроме знака электрического заряда. Эту частицу, названную позитроном, вскоре открыли экспериментально. Спустя несколько лет ученые осознали, что носители заряда в полупроводниках — кремнии, германии, арсениде галлия и многих других — также ведут себя подобно электронам и позитронам. Так, в полупроводниках есть два типа носителей с противоположным зарядом (их называют электронами и дырками), они могут взаимно уничтожаться (рекомбинировать) с высвобождением избытка энергии. Рекомбинация электрона и дырки с излучением света составляет принцип работы полупроводникового лазера, основного прибора современной оптоэлектроники.
Излучение света является не единственным возможным исходом при столкновении электрона и дырки в полупроводниках. Часто освобождающаяся энергия может быть потеряна на раскачку соседних атомов или подхвачена пролетающим мимо электроном. Последний процесс называется оже-рекомбинацией и является главным «киллером» электрон-дырочных пар в лазерах. Он назван в честь Пьера Оже — французского физика, исследовавшего эти процессы. Разработчики лазеров стремятся усилить вероятность излучения света при столкновении электрона и дырки и ослабить все другие процессы.

Огромным воодушевлением для оптоэлектроники полупроводников было предложение использовать графен в качестве материала для полупроводниковых лазеров, высказанное выпускником МФТИ Виктором Рыжим. По изначальной теоретической идее, оже-рекомбинация в графене должна быть запрещена законами сохранения импульса и энергии. Математически эти законы сохранения выглядят схожим образом для электрон-дырочных пар в графене и для электрон-позитронных пар — в оригинальной теории Дирака. Запрет же рекомбинации электрона и позитрона с передачей энергии третьей частице был известен очень давно.
Однако в графене эксперименты упорно демонстрировали быстрое взаимное исчезновение частиц и античастиц, электронов и дырок. По всем внешним проявлениям это исчезновение шло по сценарию Оже. Более того, время исчезновения пар в эксперименте составляло менее пикосекунды — и это в сотни раз быстрее, чем в используемых сейчас оптоэлектронных материалах. Эксперимент предрекал огромные трудности в реализации лазера на основе графена.
Исследователи из МФТИ и Тохоку выяснили, что запрещенное классическими законами сохранения исчезновение электронов и дырок в графене разрешается в квантовом мире благодаря соотношению неопределенностей «время — энергия». Согласно ему, закон сохранения можно нарушить на величину, обратно пропорциональную времени свободного пробега частицы. А время свободного пробега электрона в графене является довольно коротким, так как электроны представляют собой плотную «кашу». В современной квантовой физике существует мощный метод неравновесных функций Грина, который позволяет систематически учесть неопределенность энергии частицы. Этот метод и был применен авторами работы для расчетов вероятности оже-процесса в графене. Результаты показали хорошее согласие с экспериментальными данными.
«Эта задача была вначале похожа на математическую головоломку, а не на обычную физическую проблему, — рассказывает Дмитрий Свинцов, руководитель лабораторииоптоэлектроники двумерных материалов МФТИ, — Привычные законы сохранения разрешают рекомбинацию только если все три частицы — участницы процесса движутся строго в одну сторону. Вероятность такого события — как отношение объема точки к объему куба, она стремится к нулю. К счастью, мы вовремя перешли от абстрактной математики к квантовой физике, где частица не имеет строго определенной энергии. И тогда вероятность процесса оказалась конечной и достаточной для экспериментального наблюдения».
Работа не только объясняет возможность запретного процесса оже-рекомбинации, но и указывает условия, при которых он вновь будет слабым. Этот факт делает актуальной идею лазеров на основе графена. При быстром «сгорании» частиц и античастиц в экспериментах с графеном электроны и дырки нагреваются до сверхвысоких температур, а в лазерах можно использовать носители с малой энергией, которые, согласно расчетам, живут дольше. Первые экспериментальные свидетельства лазерной генерации были тем временем получены в университете Тохоку (Япония).
Важно, что метод расчета времени «сгорания» электронов и дырок, развитый в работе, не ограничен графеном. Он применим к целому семейству так называемых «дираковских материалов», в которых поведение носителей заряда подобно электронам и позитронам из ранней теории Дирака. По предварительным расчетам, много большего времени жизни носителей — а значит, и более эффективной лазерной генерации — можно достичь в квантовых ямах из теллурида кадмия-ртути, где законы сохранения для оже-рекомбинации получаются «более строгими».
Бытует мнение, что в большинстве случаев великими учеными, спортсменами и музыкантами становятся те, кто с самого детства проявлял соответствующие способности. Поэтому родители с трепетом всматриваются в ранние увлечения своих чад, чтобы как можно раньше выявить талант. Однако авторы нового исследования выяснили, что такое поведение — ошибка. Оказывается, большинство тех, кто сегодня определяет лицо мировой науки, спорта и искусства, в детстве ничем особенным не выделялись. Более того, интенсивная «дрессировка» с малых лет скорее мешает, чем помогает достичь вершин во взрослой жизни.
Добыча полезных ископаемых из карбонатных коллекторов, составляющих значительную часть мировых запасов, сейчас сталкивается с ключевой проблемой — низкой проницаемостью пород. Это значит, что нефть и газ находятся в изолированных порах и не могут естественным путем поступать к скважине, что делает традиционные методы добычи малоэффективными и очень дорогими. Стандартным решением для этого является кислотная обработка, когда в пласт закачивают реагент, который растворяет породу. Однако сейчас этот процесс остается непредсказуемым из-за отсутствия точных данных о трансформации породы при длительном воздействии кислотного раствора. Ученые из Пермского Политеха и ИПНГ РАН разработали уникальную методику кислотной обработки, которая позволяет более точно оценить изменение проницаемости породы. Разработка уникальна и не имеет аналогов в мире.
Компьютерное моделирование показало, что комета из китайских хроник 5 года до нашей эры могла визуально зависнуть над Иудеей благодаря синхронизации с вращением Земли. Это дает физическое объяснение библейскому описанию остановившейся звезды, хотя отсутствие упоминаний о таком ярком объекте в римских летописях ставит гипотезу под сомнение.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
