Физики раскрыли тайну исчезновения частиц и античастиц в графене

Ученые из МФТИ и Японии смогли объяснить парадоксальное явление взаимного уничтожения частиц и античастиц в графене, которое известно специалистам как оже-рекомбинация.

28.4K

Выбор редакции

Исследователи из МФТИ и Университета Тохоку (Япония) смогли объяснить парадоксальное явление взаимного уничтожения частиц и античастиц в графене, которое известно специалистам как оже-рекомбинация. Долгое время оно считалось запрещенным фундаментальными физическими законами сохранения импульса и энергии, но упорно наблюдалось в экспериментах. Теоретическое обоснование этого процесса представляло до недавнего времени одну из сложнейших загадок физики твердого тела. Результаты исследования опубликованы в журнале Physical Review B.

 

В 1928 году Поль Дирак теоретически предсказал, что у электрона существует двойник, не отличающийся ничем, кроме знака электрического заряда. Эту частицу, названную позитроном, вскоре открыли экспериментально. Спустя несколько лет ученые осознали, что носители заряда в полупроводниках — кремнии, германии, арсениде галлия и многих других — также ведут себя подобно электронам и позитронам. Так, в полупроводниках есть два типа носителей с противоположным зарядом (их называют электронами и дырками), они могут взаимно уничтожаться (рекомбинировать) с высвобождением избытка энергии. Рекомбинация электрона и дырки с излучением света составляет принцип работы полупроводникового лазера, основного прибора современной оптоэлектроники.

 

Излучение света является не единственным возможным исходом при столкновении электрона и дырки в полупроводниках. Часто освобождающаяся энергия может быть потеряна на раскачку соседних атомов или подхвачена пролетающим мимо электроном. Последний процесс называется оже-рекомбинацией и является главным «киллером» электрон-дырочных пар в лазерах. Он назван в честь Пьера Оже — французского физика, исследовавшего эти процессы. Разработчики лазеров стремятся усилить вероятность излучения света при столкновении электрона и дырки и ослабить все другие процессы.

 

Физики раскрыли тайну исчезновения частиц и античастиц в графенеСхематическое изображение двух сценариев исчезновения частицы-электрона (синий) и античастицы-дырки (красная) в графене. В процессе излучательной рекомбинации (слева) энергия, выделяющаяся при взаимном уничтожении, улетает в виде порции света — фотона. При оже-рекомбинации (справа) эту энергию подхватывает пролетающий мимо электрон. Оже-процесс губителен для полупроводниковых лазеров, так как забирает на себя энергию, которую можно было бы высвободить в свет. Долгое время считалось, что оже-процесс в графене запрещен законами сохранения импульса и энергии / Пресс-служба МФТИ

 

Огромным воодушевлением для оптоэлектроники полупроводников было предложение использовать графен в качестве материала для полупроводниковых лазеров, высказанное выпускником МФТИ Виктором Рыжим. По изначальной теоретической идее, оже-рекомбинация в графене должна быть запрещена законами сохранения импульса и энергии. Математически эти законы сохранения выглядят схожим образом для электрон-дырочных пар в графене и для электрон-позитронных пар — в оригинальной теории Дирака. Запрет же рекомбинации электрона и позитрона с передачей энергии третьей частице был известен очень давно.

 

Однако в графене эксперименты упорно демонстрировали быстрое взаимное исчезновение частиц и античастиц, электронов и дырок. По всем внешним проявлениям это исчезновение шло по сценарию Оже. Более того, время исчезновения пар в эксперименте составляло менее пикосекунды — и это в сотни раз быстрее, чем в используемых сейчас оптоэлектронных материалах. Эксперимент предрекал огромные трудности в реализации лазера на основе графена.

 

Исследователи из МФТИ и Тохоку выяснили, что запрещенное классическими законами сохранения исчезновение электронов и дырок в графене разрешается в квантовом мире благодаря соотношению неопределенностей «время — энергия». Согласно ему, закон сохранения можно нарушить на величину, обратно пропорциональную времени свободного пробега частицы. А время свободного пробега электрона в графене является довольно коротким, так как электроны представляют собой плотную «кашу». В современной квантовой физике существует мощный метод неравновесных функций Грина, который позволяет систематически учесть неопределенность энергии частицы. Этот метод и был применен авторами работы для расчетов вероятности оже-процесса в графене. Результаты показали хорошее согласие с экспериментальными данными.

 

«Эта задача была вначале похожа на математическую головоломку, а не на обычную физическую проблему, — рассказывает Дмитрий Свинцов, руководитель лаборатории оптоэлектроники двумерных материалов МФТИ, — Привычные законы сохранения разрешают рекомбинацию только если все три частицы — участницы процесса движутся строго в одну сторону. Вероятность такого события — как отношение объема точки к объему куба, она стремится к нулю. К счастью, мы вовремя перешли от абстрактной математики к квантовой физике, где частица не имеет строго определенной энергии. И тогда вероятность процесса оказалась конечной и достаточной для экспериментального наблюдения».

 

Работа не только объясняет возможность запретного процесса оже-рекомбинации, но и указывает условия, при которых он вновь будет слабым. Этот факт делает актуальной идею лазеров на основе графена. При быстром «сгорании» частиц и античастиц в экспериментах с графеном электроны и дырки нагреваются до сверхвысоких температур, а в лазерах можно использовать носители с малой энергией, которые, согласно расчетам, живут дольше. Первые экспериментальные свидетельства лазерной генерации были тем временем получены в университете Тохоку (Япония).

 

Важно, что метод расчета времени «сгорания» электронов и дырок, развитый в работе, не ограничен графеном. Он применим к целому семейству так называемых «дираковских материалов», в которых поведение носителей заряда подобно электронам и позитронам из ранней теории Дирака. По предварительным расчетам, много большего времени жизни носителей — а значит, и более эффективной лазерной генерации — можно достичь в квантовых ямах из теллурида кадмия-ртути, где законы сохранения для оже-рекомбинации получаются «более строгими».

Naked Science Facebook VK Twitter
Физтех
146Статей
Московский физико-технический институт (МФТИ). Блог о последних научных открытиях ученых МФТИ и других российских вузов и исследовательских центров в различных областях науки, от астрофизики до генной инженерии.
28.4K
Комментарии
4 ч
Ну а что еще мог сделать Запад? Войну России объявить...
5 ч
Очевидно только то, что "Боинг" был сбит после того,...
Вчера
Кто именно заколбасил Кеннеди до сих пор неизвестно....

Колумнисты

Физтех
146Статей
Сколтех
63Статьи
Discovery Channel
40Статей
ТюмГУ
34Статьи
СФУ
15Статей
Комментарии

Быстрый вход

Или авторизуйтесь с помощью:

на сайте, чтобы оставить комментарий.
Вы сообщаете об ошибке в следующем тексте:
Нажмите Отправить ошибку