Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Физики предложили новый способ приглядывать за работоспособностью памяти будущего
Физики из МФТИ предложили новый способ изучения доменной структуры сегнетоэлектрических пленок. В перспективе он поможет понять, почему пленки теряют физические свойства при многократном воздействии электрического поля. Ученые планируют применять метод при создании и изучении свойств ячеек сегнетоэлектрической памяти.

Работа опубликована в Journal of Applied Physics. Сегнетоэлектрики — это материалы, которые имеют два стабильных состояния поляризации. Эти состояния сохраняются в отсутствие электрического поля, что позволяет использовать их для создания элементов памяти компьютера. Как правило, сегнетоэлектрики обладают доменной структурой, то есть разделены на области, которые могут иметь разную поляризацию. При приложении внешнего электрического поля поляризация доменов меняет знак на противоположный, переключается, — именно так происходит перезапись элемента памяти. Однако многократная перезапись доменов внешним полем может приводить к разрушению свойств пленок: часть доменов теряет способность переключаться при заданных условиях. Для того чтобы найти причину разрушений, необходим эффективный метод наблюдения за доменами и их переключением.
Для наблюдения за отдельными доменами, как правило, используется микроскопия пьезоотклика. Физики из МФТИ предложили альтернативный способ изучения доменной структуры тонких пленок — метод наведенного тока — и реализовали его с помощью растрового электронного микроскопа. Первый автор работы Евгений Коростылёв, директор Центра коллективного пользования уникальным научным оборудованием в области нанотехнологий МФТИ, рассказал: «Мы когда-то ездили проводить измерения на синхротроне (ускорителе частиц – прим. ред.).
Образец был подключен к измерителю тока, и мы заметили, что, когда на образец попадал пучок рентгеновских лучей, измеритель фиксировал протекание тока — возникал наведенный ток. Мы решили попробовать облучать образец тончайшим пучком высокоэнергетических электронов вместо рентгеновских лучей (которые засвечивают весь образец сразу). Нам стало интересно, будет ли возникать наведенный ток в таком случае, а также будет ли величина тока изменяться в зависимости от того, в какой домен попадает пучок».
В новой работе ученые рассматривали доменную структуру тонкой пленки смешанного оксида гафния-циркония Hf0.5Zr0.5O2. Изображение структуры физики получали при помощи электронного микроскопа и токового усилителя. А переключали домены — меняли их поляризацию — подавая внешнее напряжение на образец.
Основная идея установки, придуманной и созданной учеными, — использовать в качестве возбудителя тока в образце тончайший пучок электронов, генерируемый в растровом электронном микроскопе. Из-за различных физических характеристик доменов сила наведенного тока в них будет отличаться, а значит, по ней можно восстановить структуру образца. Электронный пучок микроскопа, попадая на образец, рождал в пленке электронно-дырочные пары, которые создавали ток, улавливаемый усилителем (вплоть до пА). Благодаря небольшому диаметру электронного пучка физики могли изучать маленькие участки пленки, на которые попадал пучок. По силе и направлению тока на этих участках восстанавливали доменную структуру образца.
Чтобы посмотреть, как меняется поляризация доменов, исследователи подавали напряжение на образец, а затем повторяли процедуру сканирования. Изменение поляризации отдельных участков пленки происходило путем приложения различных значений напряжения. Таким образом ученые управляли переключением доменов, варьируя напряжение. Дополнительно доменную структуру визуализировали известным методом микроскопии пьезоотклика и получили такие же результаты, как при использовании метода наведенного тока. Предложенный способ изучения сегнетоэлектрических структур оказался быстрее микроскопии пьезоотклика при сопоставимой точности.
О подробностях рассказала Анна Черникова, ведущий научный сотрудник Центра коллективного пользования уникальным научным оборудованием в области нанотехнологий МФТИ: «Мы заинтересованы, чтобы сегнетоэлектрические ячейки памяти могли поддерживать много циклов перезаписи. Существует проблема в потере свойств ячеек, но причины этого в литературе называются весьма спекулятивные. Никто еще не следил микроскопически, что в пленках происходит. Мы хотим применить наш метод визуализации, чтобы понять, почему пленки портятся, и предложить пути решения этой проблемы».
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Разработка ученых Института нанотехнологий, электроники и приборостроения ЮФУ потенциально может найти применение в производстве экологически чистого топлива и накопления энергии. Кроме того, технология может значительно повысить эффективность расщепления воды, способствуя переходу к устойчивой энергетике.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Ученые применили современные методы, такие как микрокомпьютерная томография, получили сотни рентгеновских изображений и создали 3D-модель. Все для того, чтобы обнаружить следы опухоли во внутренней части черепа человека, жившего в середине IV века нашей эры. Это самый ранний случай менингиомы на Пиренейском полуострове — из тех, что известны науке.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Вопреки предсказаниям, кислород-28 оказался крайне неустойчивым. Физики не успели даже зарегистрировать такие ядра, хотя теоретически они должны быть дважды магическими, а значит — особенно стабильными.
Тотальная память — плохо для мозга. Чтобы детально запомнить событие, стоит о нем вспоминать как можно реже. Чем больше вы знаете по теме, тем больше новой информации вы запомните. Но если информации будет слишком много, то не вся она будет зафиксирована в мозге. Naked Science разбирается, как сегодня ученые, нейробиологи и психологи объясняют способности нашего мозга запоминать и учиться.
Американский поэт и литературный критик Адам Кирш в эссе, опубликованном в The Guardian, рассуждает о том, как новые представления о возможностях животного разума меняют нас самих.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии