Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые предложили метод проектирования безопасных водородных систем
Сегодня развитие «зеленой» энергетики, критически важное для отказа от углеродного топлива, сталкивается с серьезной проблемой при транспортировке газов. Под давлением в трубах водород создает мощные колебания, которые резко повышают риск утечек. Традиционные подходы к решению проблемы оказываются неэффективны для проектирования надежных конструкций для трубопроводов. Ученые Пермского Политеха создали уникальную методику, которая позволяет проектировать более безопасные элементы для водородной инфраструктуры. Разработка уникальна и не имеет аналогов в мире.
Внедрение водорода — общемировой тренд, поддерживаемый странами в рамках отказа от углеродного топлива в промышленности и энергетике. Сегодня Россия входит в пятерку его ведущих производителей (вместе с Китаем, США, Индией и ЕС), изготавливая и потребляя примерно 5,5 миллиона тонн в год. Водород активно применяется для самолетов, кораблей и наземного транспорта, которые при его использовании на выходе дают только водяной пар, а не вредные выбросы. Также его задействуют в металлургии для производства стали, в нефтяной промышленности для удаления вредных примесей из сырья и как накопитель для солнечной и ветровой энергии.
Несмотря на его использование в некоторых секторах, массовому внедрению водорода препятствует высокая стоимость всей цепочки производства. Это связано с тем, что широкое применение требует колоссальных инвестиций в создание отдельной инфраструктуры: специализированных трубопроводов, хранилищ, заправочных станций и транспортных средств.
Для практического использования водород необходимо эффективно и безопасно доставить от производителя к потребителю. Наиболее перспективным для больших объемов и расстояний считается передача по трубопроводам. Однако физические свойства водорода делают транспортировку более сложной. Он в семь раз легче природного газа, поэтому, чтобы перекачивать его, в трубопроводах нужно поддерживать очень высокое давление.
Это порождает другую, не менее серьезную проблему. Когда водород под высоким давлением проходит по трубопроводу, каждый поворот и неровность создают мощные вибрации, которые распространяются по всей конструкции. Подобная ударная нагрузка приводит к «усталости» металла, повышая риски микроповреждений.
Кроме того, молекулы водорода настолько маленькие, что легко просачиваются через возникшие от вибраций трещины. А поскольку этот газ при смешении с воздухом взрывоопасен, даже незначительная утечка создает угрозу безопасности.
Для подавления опасных вибраций в трубопроводах традиционно используют специальные внутренние перегородки. Чаще всего это небольшие металлические панели, которые частично гасят колебания газового потока.
До сих пор такие элементы часто проектировали на основе старых проверенных решений или простых расчетов, которые не учитывали физические особенности водорода. Однако если просто взять готовые решения от труб с природным газом и применить их для другого газа, можно получить нежелательный результат: вместо того чтобы гасить вибрации, система будет трястись еще сильнее, что только ускорит износ и приведет к преждевременной поломке.
Ученые Пермского Политеха создали уникальную методику, которая позволяет проектировать оптимальные перегородки в водородных трубах. Это позволит свести вибрации к минимуму и сделать транспортировку более безопасной. Разработка ученых уникальна и не имеет аналогов в мире. Статья опубликована в издании «Аэрокосмическая техника, высокие технологии и инновации».
В реальности общее количество и тип перегородок в трубопроводе зависят от конкретных параметров: давления, диаметра, длины и требуемого уровня подавления вибраций. Чтобы создать инструмент, который позволит проектировать оптимальные перегородки для любых условий, необходимо изучить, как они ведут себя под давлением и как влияют друг на друга.
Сначала эксперты создали модель участка трубопровода с двумя разными пластинами. Это стандартное решение для глушения вибраций, где первая преграда принимает на себя основной удар газового потока, а вторая гасит оставшиеся колебания. Однако именно для водорода такие системы ранее не изучались.
Первая перегородка, принимающая основной удар, была спроектирована в трех вариантах: как сплошной барьер, как фильтр с малым отверстием (14 миллиметров) и с большим (20 миллиметров). Это решение связано с тем, что в старых исследованиях перегородку считали неподвижной. В реальности под давлением она сама становится новым источником вибраций, а разные отверстия могут менять не только ее жесткость, но и силу колебаний.

Вторая перегородка во всех случаях оставалась глухой. Это было сделано специально, чтобы увидеть, как именно первая преграда влияет на остальной участок трубопровода. Измеряя вибрации неизменной сплошной пластины, можно точно определить, сколько вибраций «прорвалось» через первую. Таким образом ученые оценивали эффективность наличия или отсутствия отверстий для уменьшения колебаний.
— После разработки модели мы запустили виртуальный эксперимент и задали необходимое давление, как в реальном трубопроводе. Компьютер прослеживал всю цепочку событий: как газовый поток встречает первую перегородку, как частично отражается от нее, а частично проходит через отверстие. Мы сосредоточились на первой перегородке, поскольку она принимает на себя основной удар потока. Сравнивая три ее состояния — сплошную, с малым и с большим отверстием — мы смогли увидеть, как меняется ее собственная вибрация и какая часть колебаний передается дальше, на вторую преграду. Это позволило понять, как размер отверстий в первой перегородке влияет на вибрационную нагрузку во всей остальной конструкции, — объяснил Владимир Модорский, доктор технических наук, декан аэрокосмического факультета ПНИПУ.

В результате модель ученых показала, что наличие отверстий в первой перегородке заставляет ее вибрировать с меньшей силой. При этом сама энергия колебаний не исчезает, а просто передается дальше по потоку. В этом случае вторая, «глухая» пластина, расположенная дальше по трубе, будет колебаться в два раза сильнее первой.
Анализ результатов эксперимента также показал, что наличие в трубопроводе дополнительной сплошной перегородки снижает колебания во всем участке трубопровода в два раза. Следовательно, для водорода наиболее эффективным решением является установка не двух, а трех и более пластин, что позволит гасить вибрации последовательно.
— Чтобы убедиться в достоверности результатов, модель прошла строгую проверку. Для этого участок трубы разделили на мелкие ячейки, чтобы проследить, как меняется давление и вибрации в отдельных зонах. Модель запускали несколько раз, постепенно делая эту виртуальную «сетку» мельче и подробнее. Когда при увеличении сетки показатели перестали меняться, мы убедились, что модель дает точный результат на всех уровнях. Кроме того, результаты для водорода были сопоставлены с ранее полученными нами данными при исследовании перегородок для воздуха, и разница в итоговых показателях оказалась логичной и соответствующей их физическим свойствам этих газов, — рассказала Маргарита Серегина, аспирант кафедры «Ракетно-космическая техника и энергетические системы» ПНИПУ.
Для практического применения методики инженеру необходимо в специализированной программе сначала создать цифровую модель трубопровода с заданными параметрами газа и материалов, размеры и положение перегородок. На выходе специалист получает готовое решение: сколько перегородок ставить в конкретном участке, нужны ли в них отверстия и какого диаметра, и как именно они поведут себя под давлением.
Разработка найдет прямое применение в проектировании ключевых элементов водородной инфраструктуры: магистральных трубопроводов, заправочных станций, а также в создании топливных систем для энергоустановок. Это защитит оборудование от повреждений и значительно продлит его срок службы.
Новое исследование показало, что сплоченное сообщество людей, проживающих на крайнем юге Пелопоннесского полуострова, более тысячи лет было генетически изолировано и может проследить свои корни вплоть до бронзового века.
Паническое расстройство характеризуется физическим напряжением, усиленным сердцебиением и одышкой. Ученые из Бразилии нашли способ бороться с этим недугом, создавая схожее физическое напряжение, но в спокойной и контролируемой обстановке — во время физупражнений.
За десятки километров от побережья Гренландии лежат скалистые острова Китсиссут, которые на первый взгляд кажутся неприступными для людей, не имеющих современных лодок и других технологий. Однако авторы нового исследования выяснили, что тысячи лет назад люди все же смогли достичь этих суровых земель. Мореплаватели каменного века не просто посещали острова — они обосновались там, совершив одно из самых длинных и опасных морских путешествий в истории древней Арктики.
В 1980-х годах большую популярность приобрела борьба с озоновыми дырами. Из-за нее хладагенты из хлорфторгулеродов заменили на аналоги из гидрофторуглеродов. Теперь ученые выяснили, что эта замена — как и следующие за ней, уже в рамках борьбы с глобальным потеплением — ведет к накоплению в атмосфере довольно опасных «вечных химикатов».
Ученые РГУ нефти и газа (НИУ) имени И. М. Губкина и Института проблем управления имени В.А. Трапезникова РАН (ИПУ РАН) создали технологию экспресс-анализа качества природного газа. Впервые для этих целей была разработана нейросеть, что позволило определить показатели качества пробы в режиме реального времени за несколько секунд вместо 20-40 минут традиционным способом — с помощью газовой хроматографии.
Группа ученых представила расчеты, по которым события в центре Млечного Пути можно объяснить без черной дыры. Правда, с физической точки зрения новое объяснение существенно более экзотично — настолько, что возникает вопрос о его соответствии бритве Оккама.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно