Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработка пермских ученых позволит выявлять аварийные здания с помощью нейросетей
Обслуживающие организации домов часто пренебрегают выполнением периодических осмотров и обследований для определения их технического состояния и своевременного восстановления повреждений — это дорого. При нерегулярных осмотрах сроки безопасной эксплуатации зданий снижаются. Использование беспилотников с автоматическим определением состояния стен позволяет точнее устанавливать наличие дефектов, снизить влияние субъективности экспертов, повысить производительность труда и скорость создания отчетов о состоянии домов. Ученые Пермского Политеха разрабатывают программу с искусственным интеллектом, способную выявлять аварийное состояние зданий и его причины по фотографиям трещин. Проектом уже заинтересовалось ведущее промышленное предприятие Пермского края.
Статья опубликована в журнале «Строительные конструкции, здания и сооружения». Исследование проведено в рамках реализации программы стратегического академического лидерства «Приоритет-2030».
Сегодня известны технологии автоматического определения дефектов на бетонных зданиях. Кирпичные дома отличаются от них характером трещин: они могут быть короткими и с малым раскрытием. В связи с этим может быть недостаточно разрешения изображений или видео, чтобы определить их при съемке с уровня земли. Также в России есть разработки по выявлению разрушений на кирпичных конструкциях, но они созданы на более старых нейросетях и не устанавливают причины возникновения.
Ученые Пермского Политеха создают технологию с использованием ИИ, которая позволит автоматически распознать трещины на поверхности фасадов зданий и выявить фактор их появления. Для этого эксперты написали код в программе Google Colab, в которую загрузили исходный набор данных для обучения нейросетей. Наличие посторонних предметов, условия съемки и прочее сказываются на результатах и требуют большого объема информации – т.е. серьезных временных затрат. Поэтому политехники умышленно ограничили данные до 780 обучающих и 30 тестовых изображений (640×640 пикселей). Этого достаточно для проверки эффективности.
«В основе нашей разработки – сверточные нейросети, которые помогают компьютерам видеть и понимать изображения и видео. По ходу обучения модель тренируется обнаруживать дефекты на фотографиях фасадов с трещинами и без. Она прогнозирует их расположение по «обучающим» фото, сравнивает с правильным вариантом, определяет, насколько ошиблась, и проводит корректировку. Один полный проход по всему обучающему набору данных называется эпохой. Методом подбора количества эпох от 10 до 75 мы выявили, что оптимальное число таких подходов – 50. Если значение меньше, снижается точность показателей, если больше – почти не меняется, но длительность обучения увеличивается примерно в 1,57 раза», – комментирует Сергей Крылов, аспирант кафедры «Строительные конструкции и вычислительная механика» ПНИПУ.
«Сегодня программа определяет трещины на тестовых фотографиях за время не более 20 миллисекунд, то есть не менее трех кадров в секунду. Планируется улучшить этот показатель до восьми кадров, что позволит качественно определять дефекты на видео в реальном времени с использованием беспилотных летательных аппаратов. Точность определения сейчас доходит до 60 процентов. В будущем стремимся повысить ее до 95 процентов и более, а также доработать часть, отвечающую за определение причин появления трещин», – рассказывает Галина Кашеварова, профессор кафедры «Строительные конструкции и вычислительная механика» ПНИПУ, доктор технических наук.
Созданная учеными ПНИПУ программа в дальнейшем позволит повысить точность и скорость своевременного выявления аварийных зданий и тем самым повысит их безопасность. На данном этапе разработка позволяет ускорять создание технических отчетов о состоянии домов, снижая ручной труд.
Команда российских исследователей, включая ученых из НИУ ВШЭ, применили искусственный интеллект для анализа подписок 4,5 тысячи студентов на VK-сообщества. Оказалось, что алгоритмы могут с высокой точностью предсказывать, кто отличник, а у кого трудности с учебой.
В длительном выступлении 30 мая 2025 года Илон Маск не ограничился повторением уже известного, но и обозначил ряд новых моментов по программе Starship и конкретике первых нескольких волн полетов на Марс.
Хотя попытки объединить квантовую теорию и гравитацию десятилетиями терпели неудачу, ученые продолжают выдвигать новые, порой крайне спорные гипотезы. Авторы нового исследования, например, предложили посмотреть на гравитацию так же, как на другие фундаментальные силы природы — через симметрии и поля.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Исследователи ВШЭ выделили более 4000 примеров устной русской речи билингвов из семи регионов России и выяснили: большинство нестандартных форм в конструкциях с числительными связано не только с их родным языком, но и с тем, как часто выражение встречается в повседневной речи. Например, фразы «два часа» или «пять километров» почти всегда совпадают с литературным вариантом, а вот менее привычные выражения, особенно с числительными от двух до четырех, а также с собирательными формами вроде «двое» или «трое», часто звучат иначе.
Хотя попытки объединить квантовую теорию и гравитацию десятилетиями терпели неудачу, ученые продолжают выдвигать новые, порой крайне спорные гипотезы. Авторы нового исследования, например, предложили посмотреть на гравитацию так же, как на другие фундаментальные силы природы — через симметрии и поля.
Да, с волосами и люком все так. У космонавта Суниты Уильямс волосы на МКС плавали свободно, а у Кэти Пэрри и прочих в полете 14 апреля 2025 года — нет. Но это не значит, что суборбитального космического полета первого чисто женского экипажа не было или что он был инсценировкой. Причем, в общем-то, чтобы понять это, даже не нужно обладать специальными знаниями.
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Мощнейшее отключение электроэнергии за последние 20 лет истории Европы случилось уже неделю назад, а испанские власти пока так и не объявили о его причинах. Это логично: как мы покажем ниже, ответ на вопрос, кто виноват, получится очень неполиткорректным. И, более того, противоречащим линии правящей в Испании партии. Но мы живем за тысячи километров от нее, поэтому можем себе позволить аполитичный анализ случившегося. Так что же произошло на самом деле и каковы наши шансы увидеть подобное у себя дома?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии