Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработка пермских ученых позволит выявлять аварийные здания с помощью нейросетей
Обслуживающие организации домов часто пренебрегают выполнением периодических осмотров и обследований для определения их технического состояния и своевременного восстановления повреждений — это дорого. При нерегулярных осмотрах сроки безопасной эксплуатации зданий снижаются. Использование беспилотников с автоматическим определением состояния стен позволяет точнее устанавливать наличие дефектов, снизить влияние субъективности экспертов, повысить производительность труда и скорость создания отчетов о состоянии домов. Ученые Пермского Политеха разрабатывают программу с искусственным интеллектом, способную выявлять аварийное состояние зданий и его причины по фотографиям трещин. Проектом уже заинтересовалось ведущее промышленное предприятие Пермского края.
Статья опубликована в журнале «Строительные конструкции, здания и сооружения». Исследование проведено в рамках реализации программы стратегического академического лидерства «Приоритет-2030».
Сегодня известны технологии автоматического определения дефектов на бетонных зданиях. Кирпичные дома отличаются от них характером трещин: они могут быть короткими и с малым раскрытием. В связи с этим может быть недостаточно разрешения изображений или видео, чтобы определить их при съемке с уровня земли. Также в России есть разработки по выявлению разрушений на кирпичных конструкциях, но они созданы на более старых нейросетях и не устанавливают причины возникновения.
Ученые Пермского Политеха создают технологию с использованием ИИ, которая позволит автоматически распознать трещины на поверхности фасадов зданий и выявить фактор их появления. Для этого эксперты написали код в программе Google Colab, в которую загрузили исходный набор данных для обучения нейросетей. Наличие посторонних предметов, условия съемки и прочее сказываются на результатах и требуют большого объема информации – т.е. серьезных временных затрат. Поэтому политехники умышленно ограничили данные до 780 обучающих и 30 тестовых изображений (640×640 пикселей). Этого достаточно для проверки эффективности.
«В основе нашей разработки – сверточные нейросети, которые помогают компьютерам видеть и понимать изображения и видео. По ходу обучения модель тренируется обнаруживать дефекты на фотографиях фасадов с трещинами и без. Она прогнозирует их расположение по «обучающим» фото, сравнивает с правильным вариантом, определяет, насколько ошиблась, и проводит корректировку. Один полный проход по всему обучающему набору данных называется эпохой. Методом подбора количества эпох от 10 до 75 мы выявили, что оптимальное число таких подходов – 50. Если значение меньше, снижается точность показателей, если больше – почти не меняется, но длительность обучения увеличивается примерно в 1,57 раза», – комментирует Сергей Крылов, аспирант кафедры «Строительные конструкции и вычислительная механика» ПНИПУ.
«Сегодня программа определяет трещины на тестовых фотографиях за время не более 20 миллисекунд, то есть не менее трех кадров в секунду. Планируется улучшить этот показатель до восьми кадров, что позволит качественно определять дефекты на видео в реальном времени с использованием беспилотных летательных аппаратов. Точность определения сейчас доходит до 60 процентов. В будущем стремимся повысить ее до 95 процентов и более, а также доработать часть, отвечающую за определение причин появления трещин», – рассказывает Галина Кашеварова, профессор кафедры «Строительные конструкции и вычислительная механика» ПНИПУ, доктор технических наук.
Созданная учеными ПНИПУ программа в дальнейшем позволит повысить точность и скорость своевременного выявления аварийных зданий и тем самым повысит их безопасность. На данном этапе разработка позволяет ускорять создание технических отчетов о состоянии домов, снижая ручной труд.
Согласно научным данным, на Земле живут 20 квадриллионов муравьев, что составляет примерно 2,5 миллиона муравьев на каждого человека. Ученые давно спорят, почему эти насекомые стали одними из самых многочисленных существ по числу особей. Авторы нового исследования, похоже, нашли ключ к разгадке.
С началом отопительного сезона воздух в помещениях становится критически сухим. Это не просто временный дискомфорт, а серьезный фактор, который незаметно, но постоянно ослабляет наши защитные силы. Страдают также предметы интерьера, растения и домашние животные, а статическое электричество становится постоянным спутником. Вместе с экспертом ПНИПУ разбираемся, как сухой воздух влияет на наш организм и стоит ли с ним бороться.
Российские ученые разработали модель, которая показывает, как перераспределяются заряды внутри структуры металл / графен в контакте с электролитом. Она поможет предсказывать электрохимические свойства таких гетероструктур, что важно для развития электрокатализа и электрохимических биосенсоров.
Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.
Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.
Согласно научным данным, на Земле живут 20 квадриллионов муравьев, что составляет примерно 2,5 миллиона муравьев на каждого человека. Ученые давно спорят, почему эти насекомые стали одними из самых многочисленных существ по числу особей. Авторы нового исследования, похоже, нашли ключ к разгадке.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно