Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Тюлени научились контролировать уровень кислорода в крови, чтобы не утонуть
Для глубоководных погружений серые тюлени отслеживают концентрацию кислорода, а не углекислого газа в крови, как большинство млекопитающих. Причем тюлени могут делать это осознанно, что меняет представление о физиологии ныряющих животных.
У наземных млекопитающих, включая человека, ключевым триггером для возобновления дыхания служит повышение уровня углекислого газа в крови. Специальные хеморецепторы — каротидные тельца, расположенные в сонных артериях — реагируют на рост CO₂, вызывая ощущение удушья и паники.
Этот механизм защищает организм от гиперкапнии (избыток CO₂), но не спасает от гипоксии (нехватка кислорода). Например, у ныряльщиков-фридайверов гипервентиляция перед погружением снижает уровень CO₂, что позволяет задержать дыхание дольше, но повышает риск потери сознания из-за кислородного голодания.
Для морских млекопитающих, таких как тюлени, киты и дельфины, длительные погружения — часть повседневной жизни. Серые тюлени, например, могут оставаться под водой до 30 минут, опускаясь на глубину более 100 метров. До сих пор считалось, что они, как и другие млекопитающие, полагаются на чувствительность к CO₂. Однако это создавало парадокс: во время погружений CO₂ накапливается в крови постепенно, тогда как кислород расходуется быстро. Если бы тюлени реагировали только на CO₂, они не успевали бы вовремя всплыть, рискуя утонуть.
Ученые также обращали внимание на анатомические особенности тюленей. Их каротидные тельца содержат в три-пять раз больше чувствительных клеток типа I, чем у наземных животных. Эти клетки реагируют на гипоксию, но ранее считалось, что их роль ограничивается рефлекторными реакциями, такими как замедление сердцебиения. Новые данные, опубликованные в журнале Science, показали, что сигналы от этих рецепторов могут достигать высших отделов мозга, влияя на сознательные решения.
Во время экспериментов зоологи поместили шесть диких серых тюленей в бассейн в искусственную среду для погружений. Животные свободно плавали между дыхательной камерой и кормовой станцией, преодолевая 60 метров под водой. В камере исследователи меняли состав воздуха: повышали кислород до 50%, снижали до 11% или увеличивали концентрацию углекислого газа в 200 раз. Каждое погружение фиксировали на видео, а кровь животных анализировали по завершении испытаний.
При вдыхании воздуха с 50% кислорода тюлени оставались под водой в среднем 260 секунд — на 6% дольше, чем в стандартных условиях. Когда уровень кислорода снижали до 11%, время погружения сокращалось на 10%, до 219 секунд. При этом даже экстремально высокая концентрация CO₂ не влияла на длительность ныряния. Она составляла 229 секунд — разница с контрольной группой оказалась статистически незначимой.
Анализ крови подтвердил, что pH и уровень углекислого газа не коррелировали с изменениями в поведении. Например, после испытаний при повышенном уровне углекислого газа pH крови снизился на 0,1 единицы, но это не заставило тюленей сократить время под водой. Зато при дефиците кислорода животные начинали всплывать раньше, даже если CO₂ оставался в норме.
В итоге ученые выяснили, что сигналы о концентрации кислорода поступают в мозг через увеличенные каротидные тельца. Это позволяет животным не только рефлекторно замедлять сердцебиение во время погружений, но и осознанно регулировать длительность ныряния, избегая гипоксии.
Открытие меняет понимание эволюции морских млекопитающих. Способность напрямую отслеживать кислород, а не полагаться на CO₂, вероятно, стала критической адаптацией, позволившей тюленям, китам и другим видам колонизировать глубины океана. Это объясняет, почему даже при экстремальных нагрузках — например, при многократных погружениях за добычей — они избегают фатальной гипоксии.
Ученые планируют выяснить, насколько этот механизм распространен у других ныряющих животных. Предварительные данные по моржам и каланам показали сходные паттерны поведения, что указывает на конвергентную эволюцию.
Кроме того, исследование может помочь в разработке методов профилактики гипоксии у людей — например, у пилотов истребителей или пациентов с дыхательными нарушениями.
Большой коллектив российских ученых из ведущих научных центров, включая Физический институт имени П. Н. Лебедева РАН, Объединенный институт ядерных исследований, НИЦ «Курчатовский институт», МФТИ и Институт ядерных исследований РАН, провел один из самых чувствительных в мире поисков больших дополнительных измерений Вселенной. С помощью уникального детектора DANSS, расположенного в непосредственной близости от энергетического ядерного реактора на Калининской АЭС, физики проанализировали рекордные 5,8 миллиона событий взаимодействия антинейтрино. Хотя прямого подтверждения существования «скрытых миров» найдено не было, полученные результаты установили самые жесткие на сегодняшний день ограничения на их возможные параметры и с высокой долей уверенности исключили гипотезу о дополнительных измерениях как объяснение многолетних загадок в физике нейтрино.
Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.
Изменение волатильности цен на биткоин можно предсказать с помощью второй по популярности криптовалюты — эфира. Его включение в предсказательную модель снижает ошибку прогноза до 23%, что намного лучше результатов нейросетей и других сложных алгоритмов. К такому выводу пришли исследователи факультета экономических наук НИУ ВШЭ.
Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.
Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.
Исследователи представили Flagship 2 — крупнейшую в истории симуляцию Вселенной. Она насчитывает более 3,4 миллиарда галактик и включает свыше 400 параметров для каждой из них — от яркости и положения до формы и скорости. Эта «виртуальная песочница» позволит воспроизвести данные, которые в ближайшие годы получит космическая обсерватория «Евклид».
Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии