Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#авиастроение
Аддитивные технологии в авиационной отрасли позволяют производить облегченные детали и сложные элементы. Но по многим причинам в процессе их изготовления возникает анизотропия — неодинаковость свойств, которая ведет к зависимости прочности и жесткости конструкций от направления механического воздействия. Поэтому необходимо изучать закономерности механического поведения 3D-материалов под воздействием нагрузки. Ученые Пермского Политеха изучили влияние концентрации напряжений на процесс циклического разрушения. Это поможет повысить качество аддитивного производства изделий с улучшенными эксплуатационными характеристиками.
Графен — один из самых легких, прочных и тонких материалов, он обладает высокой гибкостью, тепло- и электропроводностью. Благодаря таким свойствам графен способен заменить многие существующие материалы в промышленности, например, он перспективен для производства элементов автомобилей, самолетов и космических кораблей. Однако пока не существует определенной технологии объемной печати изделий из графена. Но ученые ПНИПУ нашли способ создавать изделия 3D-печатью с использованием жидких углеводородов.
Композиты широко используют в авиа- и ракетостроении — из них делают детали двигателей, створки шасси, обшивку и даже скафандры космонавтов. В промышленной сфере растет спрос на развитие методов прогнозирования изменений свойств композита в зависимости от изменений в структуре. Сегодня программы для построения моделей структуры композитов моделируют без учета технологических изменений в процессе изготовления деталей. То есть происходит разрыв между моделированием и воплощением в жизнь. Ученые Пермского Политеха разработали способ прогнозирования упругих свойств композита (например, сопротивление материала растяжению или сжатию) до его создания на практике.
Автоматические системы управления все чаще применяются в разных отраслях нашей жизни. Они выполняют функции регулирования, контроля и защиты процессов, обеспечивающих безаварийную и длительную работу различного высокотехнологичного и бытового оборудования. Например, в каждом пассажирском самолете стоит множество датчиков, которые контролируют абсолютно все, что происходит внутри и снаружи. Управляет всеми этими приборами автоматика, в которую запрограммировано большое количество алгоритмов. Но в летательном аппарате есть объекты, которым свойственно менять свои заданные параметры из-за непредвиденных ситуаций, таких как плохая погода или попадание постороннего предмета в турбину. Поэтому необходимо использовать алгоритмы, которые смогут улучшить контроль автоматики в нестандартных случаях. Ученые Пермского Политеха создали метод, который поможет улучшить автоматическую систему управления в плохих погодных условиях, а также увеличит срок службы авиационных двигателей.
В современном мире широко применяются микрофонные решетки для визуализации источников шума различного характера, в том числе и в сфере авиационной акустики. С точки зрения акустического излучения современный самолет — это очень сложный объект. Авиационный шум на местности регулируется жесткими требованиями, что заставляет авиапроизводителей непрерывно совершенствовать методы его диагностики и искать способы для его снижения. Именно для идентификации отдельных источников шума самолета или его элементов применяются методы локализации, основанные на использовании микрофонных решеток. Ученые Пермского Политеха создали специальные алгоритмы локализации для источников звука, имеющих дипольный характер.
В процессе создания деталей для самолетов обрабатывают сложнопрофильные поверхности. В частности, к ним относятся профили компрессорных лопаток газотурбинных двигателей. Управление параметрами режимов обработки таких изделий – достаточно трудоемкий процесс, так как нормативной базы данных для него пока нет. Ученые Пермского Политеха нашли способ обеспечить необходимую точность изготовления лопаток двигателей. Они описали процессы их деформации, на которые влияет большое количество конструктивно-технологических и геометрических факторов. Полученные данные можно использовать для создания управляющих программ автоматизированного изготовления деталей на станках с числовым программным управлением. Это позволит эффективно выбирать сочетания управляемых параметров режима их обработки и повысить качество отечественных двигателей.
Управление современным самолетом базируется на получении достоверной информации о техническом состоянии его авиационных двигателей. Сложность и высокий уровень эксплуатационных нагрузок турбомашин способствуют увеличению вероятности отказов датчиков измерения параметров двигателей. Для повышения надежности системы автоматического управления двигателя важно усилить существующий механизм резервирования. Решая эту задачу, ученые Пермского Политеха разработали алгоритмический метод повышения отказоустойчивости системы управления двигателем. Он уже был протестирован на данных испытаний отечественного авиадвигателя типа ПС-90А и сейчас ведутся работы по непосредственной апробации технологии. Исследование способствует обеспечению технологического суверенитета России.
Сегодня в авиа- и машиностроении из-за своей прочности и легкости особую популярность приобрели смешанные пакеты полимерных композиционных материалов с титановыми или алюминиевыми сплавами. Но обработка таких многокомпонентных слоистых структур имеет ряд трудностей. При механической обработке довольно вязких титановых сплавов сильно повышается температура и происходит защемление режущего инструмента. В то же время полимерные композиционные материалы чувствительны к нагреву, что вызывает необходимость охлаждения зоны разрезания. Так как титановые сплавы относятся к важнейшим стратегическим конструкционным материалам для летательных аппаратов, создание смазки, повышающей эффективность обработки материала, является актуальной задачей. Жидкие смазочно-охлаждающие средства неприемлемы для этих целей из-за влагопоглощения полимерных композиционных материалов. Для решения этой проблемы ученый Пермского Политеха разработал новый уникальный состав твердой смазки. Отечественная разработка обладает высокими смазывающими и антифрикционными свойствами, а также более эффективна при механической обработке отверстий в деталях из труднообрабатываемых материалов.
Новый подход к оценке устойчивого развития предприятия был сформулирован в ЮУрГУ. Аспиранты и ученые кафедры экономики и финансов провели исследование устойчивости технологического развития бизнеса. Исследование полезно для органов государственной власти при анализе и отборе предприятий для пилотной цифровой трансформации.
Исследование разработчиков из Пермского Политеха позволит повысить прочность металлических изделий более чем на 30 процентов. Укрепить ответственные конструкции поможет комплекс из инструмента и специальной программы, которая подберет оптимальные режимы обработки поверхности. Разработку можно использовать в области машиностроения и авиастроения. Отечественных аналогов комплекса пока нет.
Ученые из Пермского Политеха разрабатывают технологию, которая позволит усовершенствовать металлы и сплавы для машиностроительной и аэрокосмической отрасли. Уникальность пермской разработки состоит в том, что она позволит изменять свойства металлов, экономично расходуя материалы для напыления покрытий.
Исследователи из Пермского Политеха нашли способ обработки полимеров для самолетов нового поколения. Они предложили технологию, которая позволит избежать «отказов» деталей крылатых машин. Новый способ обработки полимерных композиционных материалов предотвратит их неисправности и сократит затраты на производство авиатехники.
Ученые ТГУ предложили новый способ получения композитной «скользкой» керамики AlMgB14 (алюминий-магний-бор). Твердость полученных композитов на 40 процентов выше, чем в образцах без добавок, а коэффициент трения практически в два раза ниже, чем у смазанной полированной стали. Холодильники, кондиционеры и другое оборудование с комплектующими из «скользкой» керамики будут меньше шуметь и прослужат дольше, поскольку уменьшится трение деталей, а потребление энергии снизится в несколько раз. Новый материал может применяться во многих отраслях. В том числе, в машино- и авиастроении.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Последние комментарии