• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
10.04.2017
Редакция Naked Science
386

Нейросеть различила шесть классов снежинок

Швейцарские ученые разработали компьютерный алгоритм, который способен автоматически распознавать шесть классов твердых атмосферных осадков с точностью до 95 процентов.

giphy
©Wikipedia / Автор: Наталья Федосеева

Понимание микрофизики гидрометеоров важно для оценки атмосферных осадков, в частности их количества. Сейчас такая оценка проводится путем дистанционного зондирования Земли, например с помощью космических спутников, и математического моделирования — численного прогноза погоды (NWP). При этом точность методов зависит от полноты данных о микроструктуре дождевых капель или снежинок — морфологии, размера, массы, агрегатного состояния, — их сбором занимаются поляриметрические метеорадары или бортовые датчики самолетов. Однако существующие системы, как правило, не позволяют быстро типизировать гидрометеоры и являются дорогими в обслуживании.

 

Более перспективными для анализа метеоданных считаются технологии на основе метода главных компонент (PCA) и искусственных нейросетей. Так, согласно прошлым работам, подобные алгоритмы могут автоматически классифицировать облака с точностью свыше 80 процентов. Получить высококачественные изображения гидрометеоров, в свою очередь, позволяют мультиракурсные камеры для съемки снежинок (Multi-Angle Snowflake Camera, MASC). Эти системы оснащены тремя камерами, расположенными под углом 36 градусов, с разрешением 33 микрометра на пиксель. В ходе съемки MASC делает монохромные стереографические снимки объектов размером 100–100 000 микрометров.

 

Нейросеть различила шесть классов снежинок – иллюстрация к материалу на Naked Science

Классы снежинок / ©Christophe Praz et al., Atmospheric Measurement Techniques, 2017

 

В новой статье исследователи из Федеральной политехнической школы Лозанны и Федерального ведомства по метеорологии и климатологии (MeteoSwiss) описали технологию автоматизации анализа изображений, сделанных с помощью MASC. На первом этапе авторы собрали более двух миллионов снимков снежинок в Альпах и на базе французской научной антарктической станции Дюмон Д’Юрвиль в 2600 километрах от Южного полюса. Затем в полуавтоматическом режиме они оценили текстуру, морфологию и форму гидрометеоров, выявив закономерности: в частности, прямоугольные узоры были характерны для столбчатых кристаллов, тогда как у плоских они имели гексагональную форму, а у крупы — коническую.

 

Поскольку снимки были сделаны наземными камерами и включали в себя не все возможные образцы, ученые упростили десятиклассовую типизацию метеорологов Чожи Магоно (Chōji Magono) и Чунг Ву-Ли (Chung Woo Lee), известную с 1966 года. В результате они получили шесть классов снежинок: малые частицы (SP), столбчатые кристаллы (CC), планарные кристаллы (PC), сочетающие столбчатые и планарные кристаллы (CPC), агрегаты (AG) и крупы (GR). После этого группа создала алгоритм, который обучала методом мультиноминальной логистической регрессии (MLR) на 3712 снимках. Последующие испытания показали, что алгоритм хорошо справляется с распознаванием 94,7 процента снежинок, в том числе подтаявших.

 

По словам авторов, показатель можно увеличить за счет тренировки нейросети на большем количестве данных. Примечательно, что частота выпадения разных классов гидрометеоров оказалась связана с регионом: около половины (49 процентов) снежинок в Альпах исследователи отнесли к агрегатам, меньше — к малым частицам и крупе. В Антарктиде, согласно классификации, преобладают малые частицы (54 процента) и наблюдается меньше агрегатов и крупы. Также любопытно, что «звездные дендриты», часто ассоциирующиеся с «идеальными» снежинками, встречались одинаково редко: для Антарктиды и Альп этот показатель составил пять и десять процентов соответственно.

 

Статья опубликована в журнале Atmospheric Measurement Techniques.

 

Видеосюжет об исследовании / ©EPFL

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Сегодня, 07:34
Андрей Папиш

Человечество много тысячелетий живет рядом с разными вредителями. Вездесущие тараканы, мыши, крысы, вши, комары, а также множество врагов сельского хозяйства. Особый научный интерес — выяснить, откуда эти спутники людей переселились и как давно с нами соседствуют. Энтомологи выяснили, что кровососущие постельные клопы живут с человеком более 10 тысяч лет, то есть, вероятно, дольше прочих насекомых-синантропов.

11 часов назад
Юлия Трепалина

Павианы, живущие большими социальными группами, часто перемещаются по своей территории коллективно, словно выстроившись в цепочку с определенным порядком. В прошлых исследованиях это объясняли по-разному. В некоторых работах сообщалось, что расположение обезьян случайно, но в других отмечалось, что это преднамеренная стратегия, с помощью которой павианы защищают уязвимых сородичей, помещая их в центр «строя». Недавно международная группа ученых с помощью высокоточного GPS-отслеживания прояснила этот вопрос.

11 часов назад
Игорь Байдов

Звезда TOI-6894 — красный карлик, который в пять раз легче Солнца. Согласно теоретическим моделям, в протопланетном диске столь маломассивных звезд нет достаточно материала, чтобы впоследствии на их орбите сформировался газовый гигант, подобно Юпитеру. Однако международная команда астрономов с помощью наземных телескопов обнаружила несомненные признаки присутствия гигантской планеты вблизи TOI-6894. Открытие ставит под сомнение сложившееся представление о формировании планет.

Сегодня, 07:34
Андрей Папиш

Человечество много тысячелетий живет рядом с разными вредителями. Вездесущие тараканы, мыши, крысы, вши, комары, а также множество врагов сельского хозяйства. Особый научный интерес — выяснить, откуда эти спутники людей переселились и как давно с нами соседствуют. Энтомологи выяснили, что кровососущие постельные клопы живут с человеком более 10 тысяч лет, то есть, вероятно, дольше прочих насекомых-синантропов.

Позавчера, 20:01
Юлия Трепалина

Американские исследователи создали плодовых мушек, способных пристраститься к кокаину. Генетически модифицированных насекомых планируют использовать для изучения основ кокаиновой зависимости у людей.

29 мая
НИУ ВШЭ

Команда российских исследователей, включая ученых из НИУ ВШЭ, применили искусственный интеллект для анализа подписок 4,5 тысячи студентов на VK-сообщества. Оказалось, что алгоритмы могут с высокой точностью предсказывать, кто отличник, а у кого трудности с учебой.

6 мая
Редакция Naked Science

Да, с волосами и люком все так. У космонавта Суниты Уильямс волосы на МКС плавали свободно, а у Кэти Пэрри и прочих в полете 14 апреля 2025 года — нет. Но это не значит, что суборбитального космического полета первого чисто женского экипажа не было или что он был инсценировкой. Причем, в общем-то, чтобы понять это, даже не нужно обладать специальными знаниями.

22 мая
ПНИПУ

Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.

6 мая
Александр Березин

Мощнейшее отключение электроэнергии за последние 20 лет истории Европы случилось уже неделю назад, а испанские власти пока так и не объявили о его причинах. Это логично: как мы покажем ниже, ответ на вопрос, кто виноват, получится очень неполиткорректным. И, более того, противоречащим линии правящей в Испании партии. Но мы живем за тысячи километров от нее, поэтому можем себе позволить аполитичный анализ случившегося. Так что же произошло на самом деле и каковы наши шансы увидеть подобное у себя дома?

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно