Нейросеть различила шесть классов снежинок

Швейцарские ученые разработали компьютерный алгоритм, который способен автоматически распознавать шесть классов твердых атмосферных осадков с точностью до 95 процентов.

986

Выбор редакции

Понимание микрофизики гидрометеоров важно для оценки атмосферных осадков, в частности их количества. Сейчас такая оценка проводится путем дистанционного зондирования Земли, например с помощью космических спутников, и математического моделирования — численного прогноза погоды (NWP). При этом точность методов зависит от полноты данных о микроструктуре дождевых капель или снежинок — морфологии, размера, массы, агрегатного состояния, — их сбором занимаются поляриметрические метеорадары или бортовые датчики самолетов. Однако существующие системы, как правило, не позволяют быстро типизировать гидрометеоры и являются дорогими в обслуживании.

 

Более перспективными для анализа метеоданных считаются технологии на основе метода главных компонент (PCA) и искусственных нейросетей. Так, согласно прошлым работам, подобные алгоритмы могут автоматически классифицировать облака с точностью свыше 80 процентов. Получить высококачественные изображения гидрометеоров, в свою очередь, позволяют мультиракурсные камеры для съемки снежинок (Multi-Angle Snowflake Camera, MASC). Эти системы оснащены тремя камерами, расположенными под углом 36 градусов, с разрешением 33 микрометра на пиксель. В ходе съемки MASC делает монохромные стереографические снимки объектов размером 100–100 000 микрометров.

 

Классы снежинок / ©Christophe Praz et al., Atmospheric Measurement Techniques, 2017

 

В новой статье исследователи из Федеральной политехнической школы Лозанны и Федерального ведомства по метеорологии и климатологии (MeteoSwiss) описали технологию автоматизации анализа изображений, сделанных с помощью MASC. На первом этапе авторы собрали более двух миллионов снимков снежинок в Альпах и на базе французской научной антарктической станции Дюмон Д’Юрвиль в 2600 километрах от Южного полюса. Затем в полуавтоматическом режиме они оценили текстуру, морфологию и форму гидрометеоров, выявив закономерности: в частности, прямоугольные узоры были характерны для столбчатых кристаллов, тогда как у плоских они имели гексагональную форму, а у крупы — коническую.

 

Поскольку снимки были сделаны наземными камерами и включали в себя не все возможные образцы, ученые упростили десятиклассовую типизацию метеорологов Чожи Магоно (Chōji Magono) и Чунг Ву-Ли (Chung Woo Lee), известную с 1966 года. В результате они получили шесть классов снежинок: малые частицы (SP), столбчатые кристаллы (CC), планарные кристаллы (PC), сочетающие столбчатые и планарные кристаллы (CPC), агрегаты (AG) и крупы (GR). После этого группа создала алгоритм, который обучала методом мультиноминальной логистической регрессии (MLR) на 3712 снимках. Последующие испытания показали, что алгоритм хорошо справляется с распознаванием 94,7 процента снежинок, в том числе подтаявших.

 

По словам авторов, показатель можно увеличить за счет тренировки нейросети на большем количестве данных. Примечательно, что частота выпадения разных классов гидрометеоров оказалась связана с регионом: около половины (49 процентов) снежинок в Альпах исследователи отнесли к агрегатам, меньше — к малым частицам и крупе. В Антарктиде, согласно классификации, преобладают малые частицы (54 процента) и наблюдается меньше агрегатов и крупы. Также любопытно, что «звездные дендриты», часто ассоциирующиеся с «идеальными» снежинками, встречались одинаково редко: для Антарктиды и Альп этот показатель составил пять и десять процентов соответственно.

 

Статья опубликована в журнале Atmospheric Measurement Techniques.

 

Видеосюжет об исследовании / ©EPFL
986

Подпишись на нашу рассылку лучших статей и получи журнал бесплатно!


Комментарии

Аватар пользователя Илья Ведмеденко
2 ч
Фалькон 9 для коммерческих пусков обходится дешевле,...
Аватар пользователя Николай Кравцов
2 ч
ИМХО, проблема высосана из пальца. Если Атлас 5...
Аватар пользователя Тимур Гайсин
4 ч
И аналогия с SSJ-100, по-моему, вполне оправдана. Лет...

Комментарии

Plain text

  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Разрешённые HTML-теги: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <br> <iframe> <embed> <br/>
  • Строки и параграфы переносятся автоматически.

Comment text

  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Разрешённые HTML-теги: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <br> <br/>

Быстрый вход

или зарегистрируйтесь, чтобы отправлять комментарии
Вы сообщаете об ошибке в следующем тексте:
Нажмите Отправить ошибку