Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Сколтехе показали, как машинное обучение поможет увеличить нефтеотдачу
Исследователи Сколтеха совместно с партнерами из нефтедобывающей отрасли нашли способ применить алгоритмы машинного обучения для прогнозирования теплопроводности породы, ключевого показателя, необходимого для того, чтобы использовать современные методы увеличения нефтеотдачи.
Работа, поддержанная ООО «ЛУКОЙЛ-Инжиниринг», была опубликована в журнале Geophysical Journal International. Теплопроводность породы — ключевой показатель как для моделирования нефтегазоносного бассейна, так и для разработки методов увеличения нефтеотдачи, повышающих продуктивность нефтяных скважин. В отрасли часто используют тепловые методы, когда нефть в пласте нагревается различными способами, например, паром, и такие методы требуют детальной информации о процессах теплопередачи в резервуаре.
Для этого необходимо было бы напрямую измерять теплопроводность породы в скважине, но это оказалось сложной проблемой, для которой пока не найдено удовлетворительных практических решений. Поэтому ученые и специалисты-практики применяют косвенные методы, когда теплопроводность породы вычисляется на основе данных геофизических исследований скважин (ГИС), которые дают достаточно хорошее представление об изменении свойств породы вдоль скважины.
«На сегодняшний день три фундаментальные проблемы полностью исключают возможность прямого измерения теплопроводности вне интервалов отбора керна. Во-первых, это время, требующееся на измерения: инженеры-нефтяники не могут позволить вам так надолго «заморозить» скважину, потому что это экономически невыгодно.
Во-вторых, конвекция от бурового раствора сильно влияет на результаты измерений. И, наконец, форма скважин нестабильна, что влияет на некоторые технические аспекты измерений», — говорит аспирант Сколтеха и первый автор научной статьи Юрий Мешалкин. Существующие методы на основе данных ГИС используют уравнения регрессии или теоретические модели; и у тех, и у других есть недостатки, связанные с доступностью данных и нелинейностью параметров породы.
Юрий Мешалкин и его коллеги устроили своеобразное «соревнование» семи алгоритмов машинного обучения, чтобы выяснить, какой из них позволит максимально точно реконструировать теплопроводность. Для сравнения они также использовали теоретическую модель Лихтенеккера-Асаада.
Используя настоящие данные ГИС с месторождения тяжелой нефти в Тимано-Печорском бассейне на севере России, исследователи выяснили, что среди семи алгоритмов машинного обучения и обычной множественной линейной регрессии лучший результат показал алгоритм «случайный лес» (Random Forest), который обошел по точности даже теоретическую модель.
«Если исходить из сегодняшних потребностей и имеющихся решений, я бы сказал, что точность нашего лучшего результата, полученного с помощью машинного обучения, весьма высока. Трудно дать качественную оценку, потому что ситуация может меняться от месторождения к месторождению, но я считаю, что нефтедобывающие компании могут использовать такие косвенные методы прогнозирования теплопроводности породы, чтобы разрабатывать мероприятия по увеличению нефтеотдачи», — говорит Юрий Мешалкин.
Ученые считают, что алгоритмы машинного обучения имеют большой потенциал для быстрого и эффективного прогнозирования теплопроводности породы. Они более прямолинейны, устойчивы и не требуют никаких данных, кроме стандартных данных ГИС. Поэтому они могут «радикальным образом улучшить результаты геотермальных исследований, моделирования нефтегазоносных бассейнов и оптимизации термальных методов увеличения нефтеотдачи», заключают авторы статьи.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В 2023 году руководство особой экономической зоны «Алабуга» представило план развития до 2048-го: он предполагает освоение космического пространства.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии