Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Сколтехе показали, как машинное обучение поможет увеличить нефтеотдачу
Исследователи Сколтеха совместно с партнерами из нефтедобывающей отрасли нашли способ применить алгоритмы машинного обучения для прогнозирования теплопроводности породы, ключевого показателя, необходимого для того, чтобы использовать современные методы увеличения нефтеотдачи.
Работа, поддержанная ООО «ЛУКОЙЛ-Инжиниринг», была опубликована в журнале Geophysical Journal International. Теплопроводность породы — ключевой показатель как для моделирования нефтегазоносного бассейна, так и для разработки методов увеличения нефтеотдачи, повышающих продуктивность нефтяных скважин. В отрасли часто используют тепловые методы, когда нефть в пласте нагревается различными способами, например, паром, и такие методы требуют детальной информации о процессах теплопередачи в резервуаре.
Для этого необходимо было бы напрямую измерять теплопроводность породы в скважине, но это оказалось сложной проблемой, для которой пока не найдено удовлетворительных практических решений. Поэтому ученые и специалисты-практики применяют косвенные методы, когда теплопроводность породы вычисляется на основе данных геофизических исследований скважин (ГИС), которые дают достаточно хорошее представление об изменении свойств породы вдоль скважины.
«На сегодняшний день три фундаментальные проблемы полностью исключают возможность прямого измерения теплопроводности вне интервалов отбора керна. Во-первых, это время, требующееся на измерения: инженеры-нефтяники не могут позволить вам так надолго «заморозить» скважину, потому что это экономически невыгодно.
Во-вторых, конвекция от бурового раствора сильно влияет на результаты измерений. И, наконец, форма скважин нестабильна, что влияет на некоторые технические аспекты измерений», — говорит аспирант Сколтеха и первый автор научной статьи Юрий Мешалкин. Существующие методы на основе данных ГИС используют уравнения регрессии или теоретические модели; и у тех, и у других есть недостатки, связанные с доступностью данных и нелинейностью параметров породы.
Юрий Мешалкин и его коллеги устроили своеобразное «соревнование» семи алгоритмов машинного обучения, чтобы выяснить, какой из них позволит максимально точно реконструировать теплопроводность. Для сравнения они также использовали теоретическую модель Лихтенеккера-Асаада.
Используя настоящие данные ГИС с месторождения тяжелой нефти в Тимано-Печорском бассейне на севере России, исследователи выяснили, что среди семи алгоритмов машинного обучения и обычной множественной линейной регрессии лучший результат показал алгоритм «случайный лес» (Random Forest), который обошел по точности даже теоретическую модель.
«Если исходить из сегодняшних потребностей и имеющихся решений, я бы сказал, что точность нашего лучшего результата, полученного с помощью машинного обучения, весьма высока. Трудно дать качественную оценку, потому что ситуация может меняться от месторождения к месторождению, но я считаю, что нефтедобывающие компании могут использовать такие косвенные методы прогнозирования теплопроводности породы, чтобы разрабатывать мероприятия по увеличению нефтеотдачи», — говорит Юрий Мешалкин.
Ученые считают, что алгоритмы машинного обучения имеют большой потенциал для быстрого и эффективного прогнозирования теплопроводности породы. Они более прямолинейны, устойчивы и не требуют никаких данных, кроме стандартных данных ГИС. Поэтому они могут «радикальным образом улучшить результаты геотермальных исследований, моделирования нефтегазоносных бассейнов и оптимизации термальных методов увеличения нефтеотдачи», заключают авторы статьи.
На юге Шотландии расположена деревня, издавна связанная с легендой о Мерлине — великом волшебнике, наставнике короля Артура. Ранее эта история, как и многие другие части артуровского цикла, не имела никаких археологических подтверждений — только крайне запутанные упоминания в древних манускриптах. Теперь ситуация изменилась.
Кошки, как и собаки, умеют бегать за игрушками и возвращать их хозяевам. Это науке хорошо известно. Но кто из них делает это охотнее? Чтобы ответить на вопрос, американские ученые решили сравнить оба вида домашних питомцев. Они назвали наиболее восприимчивые к этой игре породы, а также порассуждали о природе такого поведения.
За последние 20 лет количество извлеченных из океана микроорганизмов значительно увеличилось, однако расшифровать их геном и использовать эту информацию в биотехнологии и медицине было непросто. Результаты нового исследования показали, что обнаруженные организмы можно использовать для решения таких серьезных проблем, как нехватка противомикробных препаратов, пластиковое загрязнение, а также при разработке новых ферментов для редактирования генома.
Месторождения самородного золота приурочены главным образом к кварцевым жилам. Считается, что оно осаждается из горячих магматических растворов, внедряющихся по трещинам в горных породах. Однако образование крупных скоплений золота представляет собой минералогическую загадку. Австралийские ученые предположили, что дело — в пьезоэлектрических свойствах кварца, которые под действием частых землетрясений способствуют образованию больших скоплений драгоценного металла.
На юге Шотландии расположена деревня, издавна связанная с легендой о Мерлине — великом волшебнике, наставнике короля Артура. Ранее эта история, как и многие другие части артуровского цикла, не имела никаких археологических подтверждений — только крайне запутанные упоминания в древних манускриптах. Теперь ситуация изменилась.
В ноябре 2022 года астрономы заметили кое-что необычное — «странный радиокруг», расположенный вблизи галактического центра Млечного Пути. Обнаружить светящееся кольцо в месте, где его быть не должно, удалось с помощью одного из самых мощных в мире радиотелескопов — MeerKAT в ЮАР. Ученые считают, что радиокруг возник из-за массивной звезды, с поверхности которой звездный ветер сдувает внешние слои.
Месторождения самородного золота приурочены главным образом к кварцевым жилам. Считается, что оно осаждается из горячих магматических растворов, внедряющихся по трещинам в горных породах. Однако образование крупных скоплений золота представляет собой минералогическую загадку. Австралийские ученые предположили, что дело — в пьезоэлектрических свойствах кварца, которые под действием частых землетрясений способствуют образованию больших скоплений драгоценного металла.
На юге Шотландии расположена деревня, издавна связанная с легендой о Мерлине — великом волшебнике, наставнике короля Артура. Ранее эта история, как и многие другие части артуровского цикла, не имела никаких археологических подтверждений — только крайне запутанные упоминания в древних манускриптах. Теперь ситуация изменилась.
Предприятия Научного дивизиона госкорпорации «Росатом» и группа строительных компаний «Реформа» заключили договор о сотрудничестве и впервые применили для демонтажа высотных металлических конструкций — кранов-перегружателей — мобильный лазерный комплекс. МЛК, разработанный в стенах одного из институтов «Росатома», не имеет аналогов в стране.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии