Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Сколтехе показали, как машинное обучение поможет увеличить нефтеотдачу
Исследователи Сколтеха совместно с партнерами из нефтедобывающей отрасли нашли способ применить алгоритмы машинного обучения для прогнозирования теплопроводности породы, ключевого показателя, необходимого для того, чтобы использовать современные методы увеличения нефтеотдачи.
Работа, поддержанная ООО «ЛУКОЙЛ-Инжиниринг», была опубликована в журнале Geophysical Journal International. Теплопроводность породы — ключевой показатель как для моделирования нефтегазоносного бассейна, так и для разработки методов увеличения нефтеотдачи, повышающих продуктивность нефтяных скважин. В отрасли часто используют тепловые методы, когда нефть в пласте нагревается различными способами, например, паром, и такие методы требуют детальной информации о процессах теплопередачи в резервуаре.
Для этого необходимо было бы напрямую измерять теплопроводность породы в скважине, но это оказалось сложной проблемой, для которой пока не найдено удовлетворительных практических решений. Поэтому ученые и специалисты-практики применяют косвенные методы, когда теплопроводность породы вычисляется на основе данных геофизических исследований скважин (ГИС), которые дают достаточно хорошее представление об изменении свойств породы вдоль скважины.
«На сегодняшний день три фундаментальные проблемы полностью исключают возможность прямого измерения теплопроводности вне интервалов отбора керна. Во-первых, это время, требующееся на измерения: инженеры-нефтяники не могут позволить вам так надолго «заморозить» скважину, потому что это экономически невыгодно.
Во-вторых, конвекция от бурового раствора сильно влияет на результаты измерений. И, наконец, форма скважин нестабильна, что влияет на некоторые технические аспекты измерений», — говорит аспирант Сколтеха и первый автор научной статьи Юрий Мешалкин. Существующие методы на основе данных ГИС используют уравнения регрессии или теоретические модели; и у тех, и у других есть недостатки, связанные с доступностью данных и нелинейностью параметров породы.
Юрий Мешалкин и его коллеги устроили своеобразное «соревнование» семи алгоритмов машинного обучения, чтобы выяснить, какой из них позволит максимально точно реконструировать теплопроводность. Для сравнения они также использовали теоретическую модель Лихтенеккера-Асаада.
Используя настоящие данные ГИС с месторождения тяжелой нефти в Тимано-Печорском бассейне на севере России, исследователи выяснили, что среди семи алгоритмов машинного обучения и обычной множественной линейной регрессии лучший результат показал алгоритм «случайный лес» (Random Forest), который обошел по точности даже теоретическую модель.
«Если исходить из сегодняшних потребностей и имеющихся решений, я бы сказал, что точность нашего лучшего результата, полученного с помощью машинного обучения, весьма высока. Трудно дать качественную оценку, потому что ситуация может меняться от месторождения к месторождению, но я считаю, что нефтедобывающие компании могут использовать такие косвенные методы прогнозирования теплопроводности породы, чтобы разрабатывать мероприятия по увеличению нефтеотдачи», — говорит Юрий Мешалкин.
Ученые считают, что алгоритмы машинного обучения имеют большой потенциал для быстрого и эффективного прогнозирования теплопроводности породы. Они более прямолинейны, устойчивы и не требуют никаких данных, кроме стандартных данных ГИС. Поэтому они могут «радикальным образом улучшить результаты геотермальных исследований, моделирования нефтегазоносных бассейнов и оптимизации термальных методов увеличения нефтеотдачи», заключают авторы статьи.
Онлайн-шопинг, доставка еды, мобильный банкинг и стриминг кино — часть повседневности. Мы почти не задумываемся, что делает все это возможным. Ответ — облачные технологии. За каждой покупкой, переводом или просмотром фильма работает невидимая инфраструктура, без которой современные цифровые сервисы попросту остановились бы. Рассказываем, как облака изменили нашу цифровую жизнь и стали незаметным мотором современной экономики.
В рамках новой модели вспышки сверхновых существенно нарушили парниковый эффект на нашей планете. Это должно приводить к похолоданиям и даже вымиранию отдельных видов.
Сегодня в облаке запускают продукты, тестируют гипотезы, обучают ИИ-модели, автоматизируют бухгалтерию и разворачивают сервисы и приложения на сотни тысяч пользователей. Когда мы говорим, что бизнес «уходит в облако», мы имеем в виду не красивую метафору, а вполне конкретную практику — аренду инфраструктуры, вычислительных мощностей и приложений у провайдера, который отвечает за их надежную работу.
2020-е годы показали, что любая система международной торговли может быть разрушена в кратчайшие сроки. Ученые решили выяснить, какие государства в таких условиях смогут прокормить свое население, а какие — не совсем. Лидером, что неожиданно, оказалось очень небольшое государство с населением менее миллиона человек.
Инженер Эррол Маск заявил, что одновременно с вопросом о межпланетном перелете автоматически возникает вопрос о возвращении астронавтов на Землю.
Онлайн-шопинг, доставка еды, мобильный банкинг и стриминг кино — часть повседневности. Мы почти не задумываемся, что делает все это возможным. Ответ — облачные технологии. За каждой покупкой, переводом или просмотром фильма работает невидимая инфраструктура, без которой современные цифровые сервисы попросту остановились бы. Рассказываем, как облака изменили нашу цифровую жизнь и стали незаметным мотором современной экономики.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии