Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Сколтехе показали, как машинное обучение поможет увеличить нефтеотдачу
Исследователи Сколтеха совместно с партнерами из нефтедобывающей отрасли нашли способ применить алгоритмы машинного обучения для прогнозирования теплопроводности породы, ключевого показателя, необходимого для того, чтобы использовать современные методы увеличения нефтеотдачи.
Работа, поддержанная ООО «ЛУКОЙЛ-Инжиниринг», была опубликована в журнале Geophysical Journal International. Теплопроводность породы — ключевой показатель как для моделирования нефтегазоносного бассейна, так и для разработки методов увеличения нефтеотдачи, повышающих продуктивность нефтяных скважин. В отрасли часто используют тепловые методы, когда нефть в пласте нагревается различными способами, например, паром, и такие методы требуют детальной информации о процессах теплопередачи в резервуаре.
Для этого необходимо было бы напрямую измерять теплопроводность породы в скважине, но это оказалось сложной проблемой, для которой пока не найдено удовлетворительных практических решений. Поэтому ученые и специалисты-практики применяют косвенные методы, когда теплопроводность породы вычисляется на основе данных геофизических исследований скважин (ГИС), которые дают достаточно хорошее представление об изменении свойств породы вдоль скважины.
«На сегодняшний день три фундаментальные проблемы полностью исключают возможность прямого измерения теплопроводности вне интервалов отбора керна. Во-первых, это время, требующееся на измерения: инженеры-нефтяники не могут позволить вам так надолго «заморозить» скважину, потому что это экономически невыгодно.
Во-вторых, конвекция от бурового раствора сильно влияет на результаты измерений. И, наконец, форма скважин нестабильна, что влияет на некоторые технические аспекты измерений», — говорит аспирант Сколтеха и первый автор научной статьи Юрий Мешалкин. Существующие методы на основе данных ГИС используют уравнения регрессии или теоретические модели; и у тех, и у других есть недостатки, связанные с доступностью данных и нелинейностью параметров породы.
Юрий Мешалкин и его коллеги устроили своеобразное «соревнование» семи алгоритмов машинного обучения, чтобы выяснить, какой из них позволит максимально точно реконструировать теплопроводность. Для сравнения они также использовали теоретическую модель Лихтенеккера-Асаада.
Используя настоящие данные ГИС с месторождения тяжелой нефти в Тимано-Печорском бассейне на севере России, исследователи выяснили, что среди семи алгоритмов машинного обучения и обычной множественной линейной регрессии лучший результат показал алгоритм «случайный лес» (Random Forest), который обошел по точности даже теоретическую модель.
«Если исходить из сегодняшних потребностей и имеющихся решений, я бы сказал, что точность нашего лучшего результата, полученного с помощью машинного обучения, весьма высока. Трудно дать качественную оценку, потому что ситуация может меняться от месторождения к месторождению, но я считаю, что нефтедобывающие компании могут использовать такие косвенные методы прогнозирования теплопроводности породы, чтобы разрабатывать мероприятия по увеличению нефтеотдачи», — говорит Юрий Мешалкин.
Ученые считают, что алгоритмы машинного обучения имеют большой потенциал для быстрого и эффективного прогнозирования теплопроводности породы. Они более прямолинейны, устойчивы и не требуют никаких данных, кроме стандартных данных ГИС. Поэтому они могут «радикальным образом улучшить результаты геотермальных исследований, моделирования нефтегазоносных бассейнов и оптимизации термальных методов увеличения нефтеотдачи», заключают авторы статьи.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии