• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
29.06.2022, 12:00
НИУ ВШЭ
616

В НИУ ВШЭ предложили алгоритм для определения предпочтений пользователей смартфонов

❋ 4.6

Математики из НИУ ВШЭ в Нижнем Новгороде разработали новый способ прогнозирования предпочтений пользователей мобильных устройств. Метод, который точнее известных аналогов на 2–12 процентов, основан на одновременном распознавании объектов, лиц и сцен в фотогалерее смартфона и на удаленном сервере. В будущем его можно использовать для персонализации сервисов и услуг, а также максимально подходящих под конкретного человека рекомендаций.

В НИУ ВШЭ предложили алгоритм для определения предпочтений пользователей смартфонов / ©Getty images / Автор: Иван Беляев

Статья опубликована в журнале Pattern Recognition. В основе работы рекомендательных систем лежат алгоритмы, моделирующие пользовательское поведение, исходя из той информации, которая указана в профиле человека. Традиционные рекомендательные системы используют только структурированные и текстовые данные. Исследователи НИУ ВШЭ в Нижнем Новгороде и Санкт-Петербургского отделения Математического института имени В. А. Стеклова РАН разработали модель, которая использует для таких задач фотографии.

«На мобильном устройстве каждого человека хранится огромное количество фотоснимков, которые можно использовать для определения его увлечений, а также предпочтений в еде, одежде, автомобилях. Использование современных методов распознавания фотографий в галерее смартфона позволяет решить проблему «холодного старта», которая случается у новых пользователей. Другими словами, если человек не совершал покупок, не смотрел рекомендованные фильмы, система о нем ничего не знает и не может что-либо предложить», — считает один из авторов статьи профессор НИУ ВШЭ Андрей Савченко.

Однако, как отмечают исследователи, обработка фотографий требует защиты конфиденциальности пользователей. Большинство фотографий содержит персональные данные, обработку которых человек может запретить на удаленном сервере. Следовательно, аналитические системы должны быть установлены на самом устройстве. А это технически сложно реализуемая задача, так как для обработки одного изображения сверхглубоким сверточным нейронным сетям (CNN), которые применяются в такой обработке, требуется много времени и энергии.

Авторы статьи предложили новый метод, который позволяет быстро находить объекты, лица и определенные сцены и с высокой точностью распознавать события на фотографиях за счет одновременного анализа визуальных признаков и классификации найденных объектов с помощью нейронных сетей небольшого размера, специально разработанных для мобильных устройств. На обработку одной фотографии в них уходит от 30 до 100 мс.

За распознавание объектов и лиц отвечает детектор объектов, за определение сцен — вторая нейронная сеть-классификатор. В исследовании использовались наборы данных — PEC (Photo Event Collection) и WIDER (Web Image Dataset for Event Recognition). PEC содержит 14 классов сцен (дни рождения, свадьбы, праздники и др.), WIDER — 61 класс (встречи, танцы, пресс-конференции и другое).

Определение сцен позволяет извлечь информацию о предпочтениях человека, таких как искусство и театры, ночная жизнь, спорт. А детектор объектов может распознавать продукты питания, музыкальные инструменты, транспортные средства и другое, а также по лицам людей проводить анализ демографии (возраст, семья) и определять социальное положение. Все найденные на фотографиях лица проходят кластеризацию: алгоритм группирует в отдельные кластеры лицо каждого человека (самого пользователя на селфи, его родных и близких). Затем все фотографии с лицами помечаются как приватные (содержащие персональную информацию о пользователе и его знакомых), а остальные фотографии (в том числе и без лиц) — как потенциально общедоступные.

Таким образом, предусматривается защита персональных данных: все приватные фото и видео обрабатываются только на телефоне в автономном режиме. Другие фотографии могут быть отправлены на удаленный сервер для классификации сцен и обнаружения объектов с помощью вычислительно сложных нейронных сетей, которые характеризуются высокой точностью.
«Благодаря тому, что мы выделили приватные, а также публичные фотографии, которые обрабатываются на удаленном сервере, мы получили результат на 2–4 процента точнее, чем при использовании только нейронных сетей для мобильных устройств, и всего на 0,5 процента менее точный, чем при обработке всех фотографий с помощью сложных серверных моделей», — поясняет Андрей Савченко.

Предлагаемое решение реализовано в мобильном приложении для операционной системы Android. Экспериментальные результаты показывают возможность эффективной обработки изображений с улучшением точности на 2–12 процентов по сравнению с аналогами за счет того, что учитываются сцены и объекты одновременно.

Цифровой профиль человека сохраняется в виде гистограммы интересов, на основе которой могут работать рекомендательные системы. Например, ученые уже разработали рекомендательную систему ресторанов. На основании местоположения и информации о предпочтениях в еде система предлагает топ-10 ресторанов, которые соответствуют профилю пользователя и у которых максимальный средний рейтинг. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский университет «Высшая школа экономики» — один из крупнейших и самых востребованных вузов России. В университете учится 54 тысячи студентов и работает почти 4,5 тысячи учёных и преподавателей. НИУ ВШЭ ведёт фундаментальные и прикладные исследования в области социально-экономических, гуманитарных, юридических, инженерных, компьютерных, физико-математических наук, а также креативных индустрий. В университете действуют 47 центров превосходства, или международных лабораторий. Вышка объединяет ведущих мировых исследователей в области изучения мозга, нейротехнологий, биоинформатики и искусственного интеллекта. Университет входит в первую группу программы «Приоритет-2030» в направлении «Исследовательское лидерство». Кампусы НИУ ВШЭ расположены в четырех городах — Москве, Санкт-Петербурге, Нижнем Новгороде и Перми, а также в цифровом пространстве — «Вышка Онлайн».
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
11 июля, 17:47
Денис Яковлев

Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.

12 июля, 09:23
Александр Березин

Исследователи разобрались с тем, что происходит в организме пластикоядных гусениц при поедании и переваривании самого распространенного пластика. Оказалось, что для их здоровья это не проходит бесследно, но, похоже, есть способ помочь и гусеницам, и осуществляемому ими процессу разрушения искусственных полимеров.

10 июля, 13:16
ФизТех

Кража лошадей была серьезной проблемой для крестьянских хозяйств в Российской империи. Особенности этого явления, включающие жестокие уголовные наказания, крестьянский самосуд и межэтнические конфликты, выявили в ходе исследования юридических источников историки из МФТИ и РЭУ имени Г.В. Плеханова.

8 июля, 09:23
Полина Меньшова

Принято считать, что люди с развитыми когнитивными способностями отличаются высокими моральными принципами. Ученые из Великобритании решили проверить этот тезис научными методами и пришли к противоположному выводу.

9 июля, 08:26
Полина Меньшова

Подобрать тип физической активности, который лучше всего подходит человеку, можно исходя из особенностей его характера. Психологи из Великобритании определили, что люди с разными чертами личности получают больше удовольствия от разных видов спорта.

9 июля, 12:05
Редакция Naked Science

В июне 2025 года ВК покинули 1,2 миллиона авторов контента. Это резкое ускорение их бегства в сравнении с предшествующими месяцами. Одновременно число авторов на других платформах растет, в результате по этому показателю соцсеть обогнал не только Telegram, но и запрещенный Instagram*. Причиной происходящего многие наблюдатели посчитали совокупность решений менеджмента компании за последние годы.

17 июня, 16:49
Адель Романова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

25 июня, 15:19
ФизТех

Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.

2 июля, 11:17
Юлия Тарасова

Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно