• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
10.10.2024, 13:50
Сколтех
13,7 тыс

Узор крыльев стрекозы оказался прочнее архитектурных решений Древнего Рима и современных зданий

❋ 4.9

Исследователи из Сколтеха и их коллега из Гранадского университета (Испания) определили, какие способы укрепления куполов и сводов архитектурных построек справляются с задачей лучше других. Ученые сравнили, насколько хорошо выдерживают нагрузку конструкции с разными вариантами расположения ребер жесткости. Проверка проводилась в форме натурных и вычислительных экспериментов, в которых укрепленную конструкцию нагружали сначала равномерно, потом асимметрично. На основании полученных результатов, исследователи предложили свою собственную схему расположения ребер жесткости, вдохновленную крыльями стрекоз, которая оказалась прочнее всех рассмотренных в работе традиционных и новаторских решений.

Купол Гранадского собора в Испании. На небесно-голубом фоне видны ребра жесткости золотого и белого цветов. С древних времен для распределения веса куполов и сводов использовались различные варианты расположения ребер жесткости. Ученые из Сколтеха нашли неожиданно эффективную новую схему расположения ребер, вдохновленную природой / © Энрике Эрнандес-Монтес, Гранадский университет

Исследование опубликовано в журнале Thin-Walled Structures. Ребра жесткости используются для укрепления сводов и куполов с античности. Они делают возможными более тонкие конструкции, выбор которых бывает продиктован как эстетическими, так и инженерными соображениями — это экономия материала, широкие пролеты без промежуточных опор, изящная геометрия конструкции и большие окна, как в готических соборах. Ребра жесткости можно увидеть не только в исторических постройках, но и на станциях метро, промышленных объектах.

Однако, если говорить о выборе самой схемы расположения ребер, обычно предпочтение отдается проверенной временем классике. Это кессонные потолки — квадратная сетка, как в римском Пантеоне. Или так называемые крестовые своды — как в традиционных православных храмах крестово-купольного типа и вдохновивших их византийских прообразах. Никакого сложного анализа для поиска более совершенных решений обычно не проводится.

Изогнутая оболочка, спроектированная и изготовленная из полимерного композитного материала в рамках исследования 2023 года авторства той же научной группы. На сей раз ученые укрепили такие оболочки и проверили, какое расположение ребер жесткости эффективнее / © Анастасия Москалева и др., Composite Structures

«Мы решили проанализировать несколько вариантов расположения ребер и узнать, какие из них лучше противостоят вертикальной, а также асимметричной нагрузке, — рассказывает первый автор исследования, аспирант программы „Математика и механика“ Анастасия Москалева. — Для этого мы провели численное моделирование и физические эксперименты на изогнутых полимерных композитных оболочках, спроектированных в прошлогоднем исследовании. Их снабдили ребрами жесткости, расположенными пятью разными способами, при этом во всех случаях на ребра выделялось в два раза меньше материала, чем на саму оболочку».

Оболочки, с которыми работали исследователи, спроектированы ранее с применением метода оптимизации, называемого поиском форм: к конечной форме конструкции приходят логически через процесс, вдохновленный природой. Эксперименты в таком духе когда-то проводил Антонио Гауди: он наблюдал, как подвешенные модели деформируются под собственным весом, и использовал деформированные в обратную сторону формы в архитектуре. По сути, он добивался решения от самой гравитации, поэтому о таком подходе говорят, что «форма продиктована силой».

Изначально исследователи проанализировали пять схем расположения ребер, в числе которых две проверенные временем — кессонные потолки и крестовые своды — и две полученные алгоритмами топологической оптимизации (средняя колонка на иллюстрации). Один из этих «неклассических» вариантов получен оптимизацией толщины оболочки в каждой точке, то есть перераспределением материала туда, где он больше всего нужен. Другой образован так: две одинаковые оболочки помещаются одна на другую, и ребра создаются путем оптимизации нижней половины этой двойной структуры. Наконец, пятый, бионический дизайн получен подражанием панцирю черепахи, крыльям стрекозы и другим природным объектам, похожим по структуре на известную из геометрии «мозаику Вороного».

Пять исследованных в работе вариантов расположения ребер жесткости. В левой колонке сверху — кессонный потолок, снизу — крестовый свод. В средней колонке — результат топологической оптимизации всей оболочки (сверху) и нижней половины оболочки (внизу). В правой колонке — мозаика Вороного, но на ней подражание природе не заканчивается / © Анастасия Москалева и др., Thin-Walled Structures; переработано Николаем Посунько, Skoltech PR

И натурные, и вычислительные эксперименты показали превосходство топологически оптимизированных решений над традиционными и мозаикой Вороного с точки зрения сопротивления вертикальной нагрузке. Но при рассмотрении случая асимметричной нагрузки, как если снег скопится на одной стороне крыши или большое количество людей будут переходить с места на место единой группой, расстановка сил в корне изменилась. Победителем оказался крестовый свод, на втором месте — топологическая оптимизация единым куском. Важная деталь: хотя кессонный потолок и мозаика Вороного здесь не показали превосходного результата, именно эти схемы расположения ребер меньше всего потеряли очков при переходе от симметричной к асимметричной нагрузке.

«Это подтолкнуло нас „скрестить“ мозаику Вороного с наиболее успешным вариантом топологической оптимизации из эксперимента с вертикальной нагрузкой в надежде взять лучшее и оттуда и оттуда, — поделилась Москалева. — Мы внимательно изучили структуру крыла стрекозы, которая напоминает, но не полностью повторяет мозаику Вороного. Оказалось, что ребра жесткости в крыле можно поделить на два типа: наиболее жесткие сопротивляются изгибающей нагрузке, а более тонкие обеспечивают общую структурную стабильность крыла. И мы решили, что сможем добиться того же в случае архитектурного свода».

В ходе механических испытаний проверяли, при достижении какой нагрузки композитные оболочки не выдерживают / © Анастасия Москалева и др., Thin-Walled Structures

Чтобы сгенерировать шестой, гибридный вариант расположения ребер, ученые сначала повторили топологическую оптимизацию всей оболочки целиком. Только на формирование этих «первичных ребер» израсходовали не весь доступный материал, а 70 процентов. Оставшиеся 30 процентов распределили параметрическим алгоритмом в соответствии с мозаикой Вороного.

Структура крыла стрекозы. Ей вдохновлялись авторы исследования при создании гибридной схемы расположения ребер жесткости, распределяющих нагрузку купола или свода здания / © Анастасия Москалева и др., Thin-Walled Structures

Решение сработало так хорошо, что гибридная схема расположения ребер превзошла все остальные пять вариантов как в случае центральной осевой, так и в случае асимметричной нагрузки.

Генерация гибридного варианта ребер: на шаге (a) 70 процентов материала распределяется топологической оптимизацией, после чего на шагах (b), (c) и (d) оставшийся материал распределяется в соответствии с мозаикой Вороного; на шаге (e) первичные и вторичные ребра интегрируются в общую структуру / © Анастасия Москалева и др., Thin-Walled Structures

«В результате мы видим, что у топологической оптимизации есть большой потенциал в строительном проектировании. Но эти методы скорее используются в проектировании механических систем в автомобилестроении и самолетостроении, а в строительной инженерии — нет, — добавляет Москалева. — Да, оптимизированные формы сложны и на первых порах вызывают трудности в изготовлении. Зато если один раз оптимизировать составные части стандартного сооружения, такого как многоуровневая парковка, и поставить на поток их производство, в конечном итоге такое вложение окупится за счет экономии материала. Вдобавок к этому будет меньше рамок, ограничивающих архитекторов».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
31 октября, 08:53
Любовь С.

Ученые из коллаборации LIGO, VIRGO и KAGRA впервые зафиксировали гравитационно-волновые события, указывающие на существование черных дыр второго поколения — «потомков» предыдущих слияний. Открытие позволит понять, как именно во Вселенной рождаются сверхмассивные черные дыры.  

31 октября, 10:59
НИУ ВШЭ

Команда исследователей из России и Великобритании впервые подробно описала, как формировалась и менялась система подготовки переводчиков русского жестового языка (РЖЯ). Это масштабное исследование охватывает период с XIX века до наших дней, раскрывая как достижения, так и проблемы профессиональной среды.

31 октября, 13:25
Редакция Naked Science

Ядерный век начался 80 лет назад, но масштаб новой технологии оказался настолько велик, что полное раскрытие всех ее возможностей происходит только сегодня. А что будет через сто лет? Как атом изменит ситуацию с дата-центрами для ИИ, почему он предрасположен к дружбе с электромобилями и покорением других планет? Насколько он повлияет на нашу жизнь в следующем столетии?

1 ноября, 10:14
Максим

Международная команда ученых обнаружила в море Уэдделла ранее неизвестное место массового гнездования антарктических рыб Lindbergichthys nudifrons. Океанологи зафиксировали скопления более тысячи ухоженных гнезд, расположенных по сложным геометрическим узорам. Коллективное расселение помогает рыбам защищаться от хищников.

1 ноября, 14:20
Игорь Байдов

Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.

1 ноября, 08:50
Любовь С.

Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

13 октября, 11:10
Илья Гриднев

Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно