• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
07.06.2022, 16:05
МИФИ
26,4 тыс

Ученые увидели в вольфрамовых наноструктурах путь к новой электронике

❋ 4.7

Доцент Института ЛАПЛАЗ НИЯУ МИФИ Дмитрий Синельников в сотрудничестве с японскими коллегами из Нагойского университета изучил свойства вольфрамовых наноструктурированных кластеров. Исследование важно не только с точки зрения защиты внутренней поверхности термоядерного реактора от эрозии — оно может стать шагом к созданию новых технологий, например, эмиссионной электроники.

Ученые увидели в вольфрамовых наноструктурах путь к новой электронике / ©Getty images / Автор: Regulus Tremerus

Множество научных сил во всем мире сегодня тратится на разработку промышленного термоядерного реактора. Такие реакторы могут совершить переворот в энергетике. Ожидается, что они станут мощными, экологически чистыми источниками энергии и смогут эффективно перерабатывать отходы современных атомных электростанций. Но пока до создания модели работающего термоядерного реактора еще далеко, на пути ученых стоит множество нерешенных проблем.

В частности, создать такой реактор мешает проблема взаимодействия плазмы с внутренней поверхностью реактора. Температура термоядерной плазмы составляет десятки миллионов градусов, и первая (внутренняя) стенка реактора должна обладать устойчивостью к огромным тепловым нагрузкам. Да, от соприкосновения со стенками реактора плазма удерживается магнитным полем, однако полной изоляции не происходит, и на стенках происходят очень сложные процессы, многие из которых могут приводить к эрозии.

Один из материалов, который ученые предполагают использовать для изготовления поверхностей в активной зоне реакторов — вольфрам, самый тугоплавкий из известных на Земле металлов (плавится при температуре 3422 градуса). В нескольких лабораториях мира сегодня происходят эксперименты, связанные с поведением вольфрамовых поверхностей внутри реакторов.

Например, недавно ученые из США, работая на ускорителе DIONISOS в университете Висконсина, обнаружили, что на поверхности вольфрама при облучении плотной гелиевой плазмой образуются уникальные структуры, которые получили название вольфрамовые наноструктурированные кластеры (nanostructural tendril bundles, NTB).

Молодой ученый из Москвы, доцент Института ЛАПЛАЗ НИЯУ МИФИ Дмитрий Синельников в сотрудничестве с японскими коллегами из Нагойского университета изучил свойства этих структур. Результаты исследования опубликованы в высокорейтинговом научном журнале Nuclear Materials and Energy.

По словам Дмитрия Синельникова, механизм образования NTB еще не известен. Однако эти «новообразования» могут оказаться весьма вредными для работы реактора: дело в том, что они провоцируют появление электрических разрядов между плазмой и стенкой. И не обычных электрических разрядов, а так называемых «униполярных дуг».

В чем особенность этих дуг? В «обычном» электрическом разряде электроны движутся от анода к катоду. В случае униполярной дуги, которая образуется в вакууме, катод является одновременно и анодом: электроны, вылетая из катодного пятна, возвращаются обратно, циркулируя, как вода в фонтане. В термоядерных реакторах униполярная дуга возникает очень легко и может буквально «прогрызть» одну из стенок токамака. К тому же эти электрические разряды могут провоцировать неустойчивость плазмы.

В российско-японском исследовании была изучена причина возникновения униполярных дуг, и, что особенно важно — определены минимальные температуры, при которых вероятность зажигания дуг существенно снижается за счет реструктуризации NTB. Таким образом, результаты исследования помогут улучшить параметры работы термоядерных реакторов.

Однако, по мнению Дмитрия Синельникова, данное исследование важно не только с точки зрения защиты внутренней поверхности реактора от эрозии — оно может стать шагом к созданию новых технологий. Ведь это внутри реактора электрический разряд нежелателен, а во многих технических устройствах он наоборот, необходим. И не станут ли наноструктурированные кластеры деталями в электронных приборах?

«Научившись управлять ростом NTB-структур на разных материалах, мы надеемся найти им практическое применение в какой-то иной технологической сфере», — говорит Дмитрий Синельников. По его словам, областью применения новых структур в будущем может стать эмиссионная электроника, то есть устройства, в которых предполагается испускание электронов твердым телом в вакуум или иную среду, например СВЧ-генераторы. По мнению Дмитрия Синельникова в перспективе наноструктурированные кластеры заменят более габаритные и менее энергоэффективные накальные катоды.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Национальный исследовательский ядерный университет МИФИ - ведущий российский вуз, занимающийся подготовкой высококвалифицированных инженерных кадров для атомной отрасли, науки, IT-сферы, а также других высокотехнологичных секторов экономики России. Расположен в Москве, имеет 16 филиалов в разных регионах России, в Узбекистане и Казахстане
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
17 февраля, 10:00
ФизТех

Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.

17 февраля, 15:30
МГППУ

Пластичность мозга — его способность перестраиваться под влиянием приходящей информации. Это свойство необходимо для обучения и адаптации. Пластичность особенно высока в детском и юношеском возрасте, она помогает быстро выучить иностранный язык и освоить сложные моторные навыки (например, фигурное катание). Ресурс пластичности есть и у пожилых людей — благодаря альтернативным нейронным сетям они восстанавливаются после травмы или инсульта. Как выясняется, высокая пластичность это не всегда хорошо. Нарушение тонкого баланса между пластичностью и стабильностью может вести к неприятным последствиям, таким как хроническая боль, тиннитус (звон в ушах) и фобии.

17 февраля, 09:30
СПбГУ

Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

12 февраля, 11:41
Александр Березин

На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.

12 февраля, 08:19
Полина Меньшова

«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.

12 февраля, 07:52
Адель Романова

Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.

28 января, 10:50
Игорь Байдов

Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно