Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые упростили эксперименты в физике элементарных частиц
Исследователи Центра искусственного интеллекта НИУ ВШЭ разработали новый метод оценки надежности моделей машинного обучения. Они показали, что подход работает в восемь раз быстрее, чем полный перебор моделей, и существенно снижает объем ручной проверки. Метод можно использовать в задачах физики элементарных частиц с нейросетями различной архитектуры.
Чтобы проще и быстрее анализировать экспериментальные данные, в физике элементарных частиц все чаще используют машинное обучение и искусственный интеллект. Например, нейросети помогают обрабатывать сигналы приборов и восстанавливать недостающие данные о свойствах частиц. Такие предсказания влияют на дальнейший анализ, поэтому необходимо знать их надежность. При этом часто оценивается только точность модели и редко учитывается, насколько сильно меняются ее результаты при повторных обучениях. Особенно это заметно в работе с глубокими нейросетями: их поведение сложно интерпретировать, и результаты разных запусков обучения могут расходиться. Поэтому, несмотря на потенциальную пользу применения нейросетей, многие физики относятся к ним с недоверием.
Ученые Центра ИИ НИУ ВШЭ предложили свое решение. Они разработали метод, который автоматически сравнивает десятки вариантов нейросетей и отбирает среди них наиболее надежные и устойчивые. Идея следующая: если модель каждый раз по-новому обучать на слегка измененных данных и с разными начальными весами, то разброс ошибок покажет, насколько уверенно она работает при небольших изменениях условий. Устойчивая модель в таких испытаниях будет давать почти одинаковый результат. Исследование опубликовано в журнале IEEE Access.
Исследователи проверяли метод на задаче, где по картинке из ячеек электромагнитного калориметра нужно определить, с какой энергией и в какую точку в детекторе попала частица. Электромагнитный калориметр — это устройство, состоящее из множества ячеек и измеряющее количество энергии в каждой ячейке после попадания частицы.
«Для анализа мы сгенерировали полмиллиона виртуальных сигналов, имитирующих работу детектора, и многократно прогнали их через разные модели, каждый раз меняя обучающие и тестовые выборки. Потом с помощью нашего метода выбрали самые надежные модели и исследовали их характеристики. Так мы оценили минимальный объем примеров, при котором модель становится робастной — устойчиво ведет себя при разных запусках», — рассказал ведущий научный сотрудник Научно-учебной лаборатории (НУЛ) методов анализа больших данных Института ИИ и цифровых наук НИУ ВШЭ Федор Ратников.
Ключевой элемент подхода — специальный алгоритм отбора. Для каждого варианта модели исследователи собирали набор ее ошибок, накопленный за десятки независимых запусков, и по этому распределению оценивали, насколько предсказуемо ведет себя модель. Такой подход позволяет автоматически отсеивать модели, которые случайно сделали хорошие предсказания, и выделять те, что работают стабильно при любых разумных изменениях условий.
«Все модели мы многократно обучали на полумиллионе событий симуляции калориметра, каждый раз по-новому деля данные на обучающую и тестовую части и задавая разные случайные начальные веса. Это позволило не только измерить, как часто ошибается модель, но и отследить, как она обучается от запуска к запуску», — пояснил сотрудник НУЛ методов анализа больших данных Института ИИ и цифровых наук Алексей Болдырев.
Исследование также показало, что модели, которым вместе с сырыми сигналами передают и простые заранее известные физические величины, обходятся меньшим количеством данных и быстрее выходят на устойчивый результат. Авторы оценили минимальный объем данных, при котором такие модели сохраняют качество от запуска к запуску, и выделили две стабильно точные и надежные архитектуры.
«Новый метод позволяет ускорить выбор надежных ИИ-моделей для решения некоторых задач физики элементарных частиц. И делает это в восемь раз быстрее, чем традиционный способ полного перебора всех вариантов», — отметил стажер-исследователь НУЛ методов анализа больших данных Института ИИ и цифровых наук Андрей Шевелев.
Исследователи подчеркнули, что алгоритм полностью автоматизирован и не требует ручной настройки. Благодаря этому его можно использовать как основу для самообучающихся систем, которые смогут стабильно работать вне зависимости от колебаний в обучающих данных и собственных ограничений моделей.
Австралийские археологи обнаружили редкий клад каменных орудий на западе штата Квинсленд. В яме на берегу пересыхающего водоема лежали 60 совершенно новых тесел, изготовленных в XIX веке. Ученые установили, что это был «торговый пакет», подготовленный для обмена в экономической сети аборигенов. Владелец не смог забрать ценный груз, вероятно, из-за конфликта с европейскими поселенцами.
В Передовой инженерной школе КНИТУ-КАИ (ПИШ КАИ) действуют временные научные коллективы (ВНК), работающие над реальными инженерными задачами. Одним из наиболее ярких результатов стала работа ВНК-4, созданного для развития технологий в области легких авиационных систем. Проект реализуется под руководством Никиты Сёмина, который также возглавляет специальное образовательное пространство (СОП) ПИШ КАИ «Авиамоделирование».
В Москве 2 декабря прошел XII Конгресс «Инновационная практика: наука плюс бизнес». Организаторами мероприятия выступили компания «Иннопрактика» и Московский государственный университет имени М.В. Ломоносова. Конгресс объединил 19 мероприятий, в которых приняли участие более 2000 человек. Среди участников были первые лица и ведущие специалисты государственных структур, крупных российских корпораций, институтов развития, инвестиционных компаний, представители вузов, научно-исследовательских институтов и высокотехнологичных российских компаний. Впервые на площадке Конгресса работала территория «Научи примером». Спикеры площадки в интерактивных форматах продемонстрировали, как инновационный менталитет работает в реальных проектах.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Австралийские археологи обнаружили редкий клад каменных орудий на западе штата Квинсленд. В яме на берегу пересыхающего водоема лежали 60 совершенно новых тесел, изготовленных в XIX веке. Ученые установили, что это был «торговый пакет», подготовленный для обмена в экономической сети аборигенов. Владелец не смог забрать ценный груз, вероятно, из-за конфликта с европейскими поселенцами.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
