Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые разработали метаматериал для альтернативной магнонной электроники
Физики из России и Европы показали принципиальную возможность создания из системы «сверхпроводник — ферромагнетик» магнонных кристаллов — элементарных составляющих будущих посткремниевых электронных устройств, работающих на спиновых волнах.
Работа опубликована в журнале Advanced Science.
Магноника изучает возможность передачи и обработки информации с помощью спиновых волн. Если в фотонике мы имеем дело с фотонами или электромагнитными волнами, то в магнонике главная роль за спиновыми волнами или магнонам — гармоническими колебаниями ориентации магнитного момента. В ферромагнетике магнитные моменты электронов, то есть их спины упорядочены, возникающие в этом упорядочении волны называются «спиновыми волнами».
Традиционная магноника сейчас считается перспективной прикладной областью посткремниевой волновой электроники, потому что у спиновых волн есть ряд преимуществ по сравнению, скажем, с СВЧ-фотонами. Например, спиновые волны могут управляться внешним магнитным полем. При этом длина электромагнитной СВЧ-волны — порядка сантиметра, тогда как для спиновых волн того же СВЧ-диапазона она составит микрометры. Поэтому на основе таких управляющих волн можно сделать очень компактное микроустройство для работы с СВЧ-сигналами.
Элементарная система, с которой нужно начинать создавать какие-либо устройства, построенные на работе со спин-волновыми сигналами, — магнонные кристаллы. Они станут базовыми элементами для частотных фильтров и магнонных устройств, которые являются аналогами транзисторов. У магнонных кристаллов потенциально очень широкий спектр применения.
Авторы работы проверяли базовую гипотезу — можно ли из гибридной системы «сверхпроводник — ферромагнетик» сделать магнонный кристалл. Сверхпроводимость и ферромагнетизм сами по себе антагонисты. В сверхпроводниках, в связанных парах электронов (куперовских парах) ориентация спинов направлена противоположно, а в ферромагнетиках — сонаправлена. Традиционно ученые пытаются с помощью ферромагнетизма воздействовать на сверхпроводящие свойства.
«В последние несколько лет удается получить обратную ситуацию. Мы исследуем изначально ферромагнитные системы и смотрим, можно ли с помощью сверхпроводников каким-то образом модифицировать их ферромагнитные свойства. В этом заключается глобальный интерес к данной теме. Традиционно магноника предполагала работу при комнатной температуре. Поэтому раньше ни о какой гибридизации со сверхпроводниками, которые не существуют при комнатной температуре, речи и не шло. К тому же, ферромагнетизм традиционно считается «сильнее» сверхпроводимости и интуитивно не может быть подвержен ее влиянию. Наша лаборатория занимается криогенными системами. И мы себе поставили цель: посмотреть, что можно сделать с магнонными системами при криогенных температурах, заставив их взаимодействовать со сверхпроводниками», — делится Игорь Головчанский, соавтор работы, научный сотрудник лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ.
Основной результат этой работы заключается в том, что показана принципиальная возможность работы с магнонными кристаллами на основе гибридной системы «сверхпроводник — ферромагнетик». Ученые также продемонстрировали, что в них реализуется интересная зонная структура с запрещенными зонами в гигагерцовом диапазоне.
Работа состояла из трех этапов: изготовления и измерения образца с последующим моделированием. Образец представлял собой регулярную сверхпроводящую структуру ниобия (Nb), помещенную поверх тонкой пленки ферромагнитного пермаллоя (Py) — 80% никеля (Ni) к 20% железа (Fe).

Эту систему установили в криостат и проводили измерения коэффициента пропускания микроволнового сигнала. Если частота сигнала совпадала с фундаментальными частотами системы, наблюдалось резонансное поглощение. Это называется «ферромагнитный резонанс». Полученный в ходе работы спектр состоял из двух линий, а это свидетельствовало о том, что периодическая структура состоит из связанных зон с разными ферромагнитными свойствами. Модуляция ферромагнитных свойств происходила за счет влияния сверхпроводящей структуры. Третьим этапом было «микромагнитное моделирование», с помощью которого авторы смогли воссоздать реальную зонную структуру кристалла, которая состоит из разрешенных и запрещенных зон с разной геометрией.
Техпроцесс создания микроэлектронных компонентов на основе кремния приближается к теоретическому минимуму возможных размеров. Поэтому дальнейшее увеличение вычислительных мощностей, а значит, и миниатюризация компонентной базы требует новых подходов. У исследованных в данной работе систем «сверхпроводник — ферромагнетик» в этом отношении есть хорошие перспективы в волновой электронике, поскольку у сверхпроводников критические размеры меньше микрометра, из-за чего сверхпроводящие элементы можно делать очень маленькими.
Авторы предполагают, что результаты их исследований найдут применение в криогенной СВЧ электронике и магнонике, в том числе квантовой. Ограничением для более широкого применения пока является только невозможность существования такой системы при комнатной температуре.
Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
На Луне нет свободного кислорода, а значит, и окисленного железа там быть не должно. Меж тем оно в лунном грунте есть, и это недавно подтвердилось после анализа образцов, доставленных китайской миссией «Чанъэ-6». Планетологи заподозрили, что лунные «ржавые» минералы — последствия астероидных ударов.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.
Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
