• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
28.04.2022
УрФУ
5 161

Ученые обнаружили пылевой след кометы в виде песочных часов

5.2

Исследователи из России, Финляндии и Канады обнаружили необычную, в виде песочных часов, форму пылевого следа кометы 17P/Holmes. Частицы, образовавшие след, выделились вследствие самой мощной из задокументированных вспышек комет. Произошла она в октябре 2007 года. Рассмотреть необычную форму помогла модель с повышенной точностью вычислений.

Ученые обнаружили пылевой след кометы в виде песочных часов / ©Getty images / Автор: Владимир Богданов

Описание этого следа опубликовано в одном из старейших и ведущих мировых научных изданий по вопросам астрономии и астрофизики Monthly Notices of the Royal Astronomical Society. Реальные наблюдения кометы астрономы проводили с помощью телескопов в Австралии и США. Первый этап наблюдений начался в феврале 2013 года и продолжался в 2014-2015 годах. Второй этап длился в течение года, с сентября 2020-го.

С помощью наблюдений авторы статьи впервые установили, что совокупность орбит выброшенных вспышкой частиц кометы имеет форму песочных часов. В противоположных сторонах находятся участки схождения орбит, по которым движутся частицы (такие участки называются узлами). Один, северный, узел располагается в точке вспышки кометы, другой, южный — по ту сторону Солнца. Наибольшие орбиты — у самых мелких частиц, поэтому к узлам они приходят последними, частицы среднего и крупного размера прибывают в узлы ранее.

«Огромное количество частиц, которые были выброшены из кометы во время вспышки, распространилось по эллиптическим орбитам вокруг Солнца. Это дает уникальную возможность изучить кометный материал и его рассеивание в межпланетном пространстве. Чтобы понять физику и масштабы явления выброса, мы разработали новую модель для реалистичного описания эволюции образовавшихся кометных пылевых следов», — объясняет Мария Грицевич, руководитель академического проекта, доцент Университета Хельсинки, старший научный сотрудник Финского Института геопространственных исследований и Уральского федерального университета.

Фотография кометы, сделанная в 2015 году / ©Пресс-служба УрФУ

Модель описывала движение частиц размером от 0,001 до одного миллиметра, скорость выброса частиц, в зависимости от их размера, от меньшего к большему, составила 640 м/с и ниже. Эта модель также поможет предсказывать выпадание и интенсивность метеорных дождей. «С 2000 года я моделирую хорошо известные метеорные потоки (такие как Леониды), используя современные методы моделирования. В этом исследовании мы сами разработали высокоточные модели вспышки кометы 17P/Holmes и распространения образовавшихся частиц пылевого следа. Более того, мы впервые объединили обе модели, и это привело к созданию новой мощной модели», — говорит Маркку Ниссинен, член Финской болидной сети при Астрономической ассоциации Ursa.

Уникальность модели в том, что она учитывает эффекты давления солнечной радиации, гравитационные возмущения, вызванные Венерой, Землей и Луной, Марсом, Юпитером и Сатурном, а также гравитационное взаимодействие пылевых частиц с родительской кометой.
Исследователи смоделировали два варианта движения частиц, выброшенных в космическое пространство вспышкой кометы.

В одном случае частицы разлетались в разные стороны, в другом — только в сторону Солнца, источника основных воздействующих сил. В первой модели участвовало 2000 частиц, во второй — 800. Моделирование показало, что орбиты частиц принимают форму песочных часов только в первом случае. Другими словами, при вспышке кометы в 2007 году частицы образовали пылевой след, рассеявшись в разных направлениях.

«Сначала oни как будто растворились в космическом пространстве. Однако мы обнаружили, что частицы снова сходятся в узлах пылевого следа», — отмечает Мария Грицевич. Результаты исследований позволяют предсказывать местоположение и поведение пылевого следа кометы 17P/Holmes, в том числе, по пути к точке вспышки в 2007 году и в самой точке. Кроме того, исследования помогут провести эффективные вычисления при следующем подобном событии.

«Земля дважды в год пересекает орбитальную плоскость данной кометы, оптимальная геометрия наблюдений за следом обеспечивается в феврале и августе. Частицы других комет зачастую входят в атмосферу Земли как метеороидные потоки, и тогда мы наблюдаем их в виде метеорных дождей. Используя нашу модель, можно предсказывать время и интенсивность их возникновения», — поясняет Грицевич.

Исследования поддержаны Академией Финляндии. Ученые продолжат изучение кометы 17P/Holmes, чтобы выявить причины периодического увеличения ее яркости, определить силу воздействия на частицы вторичных и сезонных факторов (таких как негравитационное и нерегулярное давление солнечного света), a также возможность наблюдений в инфракрасном диапазоне волн. Кроме того, в планах дальнейших исследований — смоделировать первую наблюдавшуюся вспышку кометы в 1892 году и ее последствия.

«Мы прогнозируем, что благодаря опубликованным нами данным о времени прибытия и соответствующих координатах пылевого следа кометы 17P/Holmes в 2022 году он будет виден даже в телескопах астрономов-любителей. Рассчитываем на то, что результаты их наблюдений дадут дополнительную информацию о количестве и размерах частиц, их распределении. Эта информация будет полезной для построения новых моделей и понимания происходящего с кометой и ее следом», — заключает Мария Грицевич.

Напомним, что комета 17P открыта во время вспышки 6 ноября 1892 года английским астрономом Эдвином Холмсом. Другая мощная вспышка произошла 23-24 октября 2007 года и длилась около трех часов. Последовавший за вспышкой выброс частиц оказался крупнейшим из зафиксированных за все время астрономических наблюдений. Благодаря многократному увеличению размеров поверхности, отражающей солнечный свет, яркость кометы увеличилась в один миллион раз. Комета на время стала самым заметным для землян объектом на небесной сфере.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Уральский федеральный университет (УрФУ) расположен в Екатеринбурге, выполняет функции проектного офиса Уральского межрегионального научно-образовательного центра мирового уровня (УМНОЦ). В УрФУ обучается более 36 000 студентов по 334 образовательным программам. Основан 19 октября 1920 года.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
21 ноября
Елизавета Александрова

До сих пор нашу Галактику считали типичным примером того, как все устроено в любых спиральных галактиках. Но недавно астрономы рассмотрели сотню максимально похожих аналогов Млечного Пути и обнаружили, что большинство из них все же заметно отличаются.

Позавчера, 10:30
НовГУ

В этой посуде можно готовить растворы с ионами серебра и меди, которые обладают мощным антимикробным, противовирусным и иммуностимулирующим действием. Это поможет в профилактике и лечении инфекционных и вирусных заболеваний (в том числе ОРВИ, гриппа, коронавируса), повысит иммунитет населения и предотвратит эпидемии.

21 ноября
Дарья Г.

Бурная эволюция массивных звезд играет большую роль во Вселенной. Именно они ионизируют межзвездный газ и, взрываясь сверхновыми, насыщают космос более тяжелыми элементами. Поэтому ученые так заинтересованы в их изучении. И вот астрономам впервые удалось получить снимок ближайших окрестностей красного сверхгиганта вне Млечного Пути.

19 ноября
Юлия Трепалина

Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.

17 ноября
Юлия Позднякова

Евгений Левичев с командой коллег работает над созданием источника синхротронного излучения — по сути большого рентгеновского «микроскопа», с помощью которого геологи, биологи, химики и другие специалисты смогут получить новую и полезную информацию. Задача у Евгения Борисовича непростая — сделать установку с рекордными параметрами: придумать оригинальные технические решения, смоделировать процесс и настроить все наилучшим образом. Член-корреспондент РАН Евгений Борисович Левичев — директор Центра коллективного пользования «Сибирский кольцевой источник фотонов» (ЦКП «СКИФ») и заместитель директора Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН).

18 ноября
Дарья Мостовая

Ефим Аркадьевич Хазанов — академик РАН, доктор физико-математических наук, главный научный сотрудник отдела нелинейной и лазерной оптики в Институте прикладной физики им. А.В. Гапонова-Грехова РАН (Нижний Новгород), значимая фигура в российской науке. За 40 лет в науке он внес огромный вклад в развитие лазерной физики и нелинейной оптики — разработал фемтосекундный лазерный комплекс PEARL, предложил идею по созданию мегасайенс проекта XCELS, создал новое направление — термооптику магнитоактивных сред и многое другое. В 2018 году академик Хазанов был удостоен Государственной премии Российской Федерации. Он автор более 350 статей в рецензируемых научных журналах, а его работы были процитированы более 40 тысяч раз. Индекс Хирша Хазанова составляет 79. Ефим Аркадьевич рассказал нам о профессиональном пути, воспитании аспирантов, текущих исследованиях и своей жизни вне науки.

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно