Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые использовали нейронную сеть для реконструкции 3D-изображений волокнистых материалов
Исследователям Сколтеха и их коллегам из Лёвенского католического университета (Бельгия) удалось восстановить трехмерные изображения волокнистых материалов, полученных с помощью микрокомпьютерной томографии. Чтобы решить эту сложную и трудоемкую для человека задачу, ученые использовали методы машинного обучения.
Полученные результаты, опубликованные в журнале Computational Materials Science, имеют важное значение для дальнейшего углубленного анализа свойств материалов. Микрокомпьютерная томография — незаменимое средство при исследовании трехмерной микроструктуры композитов, армированных волокном, и других сложных материалов. Однако использование этого метода связано с рядом дополнительных трудностей, таких как очень малые размеры образцов, наличие на изображениях артефактов и затененных областей, а также низкое качество, либо полное отсутствие отдельных фрагментов изображения.
Для решения этой непростой задачи ученые решили воспользоваться методами, которые реставраторы применяют при восстановлении произведений искусства — в частности, методом реконструирования дефектов, который уже широко применяется в цифровой обработке изображений.
«Главное преимущество реконструкции изображений на основе ИИ — быстрота. При наличии обученной модели с помощью этого метода можно обрабатывать до сотни изображений в секунду. Человеку такая скорость просто не под силу. Кроме того, компьютеры гораздо лучше справляются с обработкой трехмерных изображений, поскольку машина способна видеть их „насквозь“ и со всех сторон, мгновенно проводя реконструкцию по всему объему, а не только по поверхности», — рассказывает первый автор статьи, аспирант Сколтеха и Лёвенского католического университета Радмир Карамов.
Карамов участвует в исследованиях, проводимых под руководством директора Центра Сколтеха по проектированию, производственным технологиям и материалам (CDMM) профессора Искандера Ахатова и профессора Лёвенского католического университета Степана Ломова. Коллектив предложил использовать для задач реконструкции трехмерных изображений микрокомпьютерной томографии генеративно-состязательные сети (GAN) с 3D-кодировщиками и декодерами.
Как поясняют авторы, армирующие включения в композитных материалах, такие как волокна, могут иметь произвольную ориентацию в трех измерениях, поэтому приходится иметь дело именно с 3D-изображениями, описывающими эту сложную внутреннюю микроструктуру. Поскольку добиться необходимой точности с помощью более привычных сверточных нейронных сетей не представлялось возможным, ученые решили использовать генеративно-состязательные сети.
«При восстановлении изображений с использованием GAN нужно обучать для этой цели не одну, а две конкурирующие между собой нейронные сети: генеративную сеть, формирующую „искусственные“ изображения, которые выглядят как подлинные; и дискриминативную сеть, задача которой — отличить „настоящие“ изображения от „искусственных“.
Как говорил создатель GAN Ян Гудфеллоу, это напоминает соперничество между фальшивомонетчиками и полицейскими. Первые стремятся напечатать как можно больше фальшивых купюр, мало отличающихся по виду от настоящих, а вторые проверяют каждую купюру на предмет подлинности», — поясняет Карамов. Ученые протестировали три варианта архитектуры GAN, выбрав для этой цели изображения микрокомпьютерной томографии наиболее сложного образца — композита, армированного короткими стеклянными волокнами, не имеющего в своей структуре никаких повторов.
В результате из трех вариантов исследователи выбрали архитектуру сети, в которой наиболее удачно сочетались высокое качество реконструкции, производительность и умеренное использование памяти графического процессора. «Предложенный нами алгоритм позволяет устранять все дефекты на изображениях и, следовательно, более точно моделировать свойства материалов и прогнозировать качество конечного материала при условии устранения всех внутренних пор и пустот в его структуре в процессе производства», — подчеркивает Карамов.
Реконструкция микроструктуры материалов — первый шаг в разработке полностью автоматического генеративного алгоритма, который позволит создавать инновационные материалы со свойствами, отвечающими требованиям конкретных приложений, добавляет он.
Ледяной гигант Уран давно привлекает внимание экстремальным наклоном и самой холодной атмосферой в Солнечной системе. Тем не менее ученые подозревали, что он производит собственное тепло. Теперь данные измерений показали, что это действительно так.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Из всех геологических эпох плиоцен и ранний плейстоцен наиболее похожи на возможное будущее Земли, если глобальное потепление продолжится. Неудивительно, что ученые стремятся узнать больше о видовом разнообразии того периода. До недавнего времени они могли изучать только следы генома пыльцы и крупных окаменелостей. Решением проблемы стал метод анализа eDNA — генетического материала из продуктов жизнедеятельности, сохраняющегося в осадочных породах. Недавно он помог реконструировать экосистему геологической формации Кап-Кёбенхавн на Севере Гренландии, возникшую два миллиона лет назад при средней температуре на 10 градусов выше современной. Теперь ученые исследовали микроорганизмы оттуда и обнаружили поразительное сходство с современными болотными угодьями.
Исследователи из Южной Кореи и Канады нашли новое объяснение «парадоксу счастья». Они обнаружили, что попытки стать счастливее приводят к противоположному результату, потому что истощают систему самоконтроля.
Сегодня, 2 марта 2025 года, аппарат Blue Ghost, построенный техасской компанией Firefly Aerospace, мягко прилунился в Море Кризисов. До сих пор все попытки частных аппаратов сделать это заканчивались не вполне удачно.
Пон Джун‑хо вновь удивил мир кино своим последним проектом «Микки 17», представленным вне конкурса на 75‑м Берлинском кинофестивале. Эта третья англоязычная работа режиссера после «Сквозь снег» и «Окчи» успела привлечь внимание критиков благодаря гармоничному сочетанию научной фантастики, социальной сатиры и черного юмора.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
Астрономы обнаружили, что почти треть всех наблюдаемых галактик во Вселенной объединены в пять самых широкомасштабных структур — галактические сверхскопления. На составленной учеными трехмерной карте одно особенно выделяется своими рекордными размерами: простирается на миллиард с лишним световых лет.
Европейские палеонтологи изучили исключительно сохранившийся скелет плезиозавра из юрского периода, обнаруженный в Германии еще в 1940 году. Тогда ископаемую рептилию спрятали от разрушений войны в музей, а через 80 лет выяснилось, что на теле древнего животного остались мягкие ткани — кожа с уцелевшими клеточными ядрами и чешуйки. Новые данные дополняют представление о внешнем виде плезиозавров, живших больше 180 миллионов лет назад.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии