Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые использовали нейронную сеть для реконструкции 3D-изображений волокнистых материалов
Исследователям Сколтеха и их коллегам из Лёвенского католического университета (Бельгия) удалось восстановить трехмерные изображения волокнистых материалов, полученных с помощью микрокомпьютерной томографии. Чтобы решить эту сложную и трудоемкую для человека задачу, ученые использовали методы машинного обучения.
Полученные результаты, опубликованные в журнале Computational Materials Science, имеют важное значение для дальнейшего углубленного анализа свойств материалов. Микрокомпьютерная томография — незаменимое средство при исследовании трехмерной микроструктуры композитов, армированных волокном, и других сложных материалов. Однако использование этого метода связано с рядом дополнительных трудностей, таких как очень малые размеры образцов, наличие на изображениях артефактов и затененных областей, а также низкое качество, либо полное отсутствие отдельных фрагментов изображения.
Для решения этой непростой задачи ученые решили воспользоваться методами, которые реставраторы применяют при восстановлении произведений искусства — в частности, методом реконструирования дефектов, который уже широко применяется в цифровой обработке изображений.
«Главное преимущество реконструкции изображений на основе ИИ — быстрота. При наличии обученной модели с помощью этого метода можно обрабатывать до сотни изображений в секунду. Человеку такая скорость просто не под силу. Кроме того, компьютеры гораздо лучше справляются с обработкой трехмерных изображений, поскольку машина способна видеть их „насквозь“ и со всех сторон, мгновенно проводя реконструкцию по всему объему, а не только по поверхности», — рассказывает первый автор статьи, аспирант Сколтеха и Лёвенского католического университета Радмир Карамов.
Карамов участвует в исследованиях, проводимых под руководством директора Центра Сколтеха по проектированию, производственным технологиям и материалам (CDMM) профессора Искандера Ахатова и профессора Лёвенского католического университета Степана Ломова. Коллектив предложил использовать для задач реконструкции трехмерных изображений микрокомпьютерной томографии генеративно-состязательные сети (GAN) с 3D-кодировщиками и декодерами.
Как поясняют авторы, армирующие включения в композитных материалах, такие как волокна, могут иметь произвольную ориентацию в трех измерениях, поэтому приходится иметь дело именно с 3D-изображениями, описывающими эту сложную внутреннюю микроструктуру. Поскольку добиться необходимой точности с помощью более привычных сверточных нейронных сетей не представлялось возможным, ученые решили использовать генеративно-состязательные сети.
«При восстановлении изображений с использованием GAN нужно обучать для этой цели не одну, а две конкурирующие между собой нейронные сети: генеративную сеть, формирующую „искусственные“ изображения, которые выглядят как подлинные; и дискриминативную сеть, задача которой — отличить „настоящие“ изображения от „искусственных“.
Как говорил создатель GAN Ян Гудфеллоу, это напоминает соперничество между фальшивомонетчиками и полицейскими. Первые стремятся напечатать как можно больше фальшивых купюр, мало отличающихся по виду от настоящих, а вторые проверяют каждую купюру на предмет подлинности», — поясняет Карамов. Ученые протестировали три варианта архитектуры GAN, выбрав для этой цели изображения микрокомпьютерной томографии наиболее сложного образца — композита, армированного короткими стеклянными волокнами, не имеющего в своей структуре никаких повторов.
В результате из трех вариантов исследователи выбрали архитектуру сети, в которой наиболее удачно сочетались высокое качество реконструкции, производительность и умеренное использование памяти графического процессора. «Предложенный нами алгоритм позволяет устранять все дефекты на изображениях и, следовательно, более точно моделировать свойства материалов и прогнозировать качество конечного материала при условии устранения всех внутренних пор и пустот в его структуре в процессе производства», — подчеркивает Карамов.
Реконструкция микроструктуры материалов — первый шаг в разработке полностью автоматического генеративного алгоритма, который позволит создавать инновационные материалы со свойствами, отвечающими требованиям конкретных приложений, добавляет он.
В зоопарках звери доживают до старости и выбывают из программ глобального сохранения видов, потому что не могут размножаться. Это ставит под угрозу усилия по поддержанию популяций редких видов.
Вопреки множеству оценок из СМИ, самый крупный остров мира небогат полезными ископаемыми, но и никак не «бесполезный кусок льда». Открытия датских ученых последних лет показывают, что ценность этого куска суши намного выше, чем можно было подумать еще в 2010-х. Так зачем на самом деле он нужен Трампу и может ли его отъем разрушить НАТО, как на это надеются некоторые в России?
Занятие творчеством и искусством не просто приятное времяпрепровождение. Оно также помогает людям сохранить здоровье, и теперь ученые, возможно, поняли почему. Команда исследователей из Великобритании выяснила, что вовлечение в творчество и искусство связано с положительными изменениями в физиологии организма. Они получили доказательства этого феномена, проанализировав кровь почти шести тысяч человек.
В зоопарках звери доживают до старости и выбывают из программ глобального сохранения видов, потому что не могут размножаться. Это ставит под угрозу усилия по поддержанию популяций редких видов.
Вопреки множеству оценок из СМИ, самый крупный остров мира небогат полезными ископаемыми, но и никак не «бесполезный кусок льда». Открытия датских ученых последних лет показывают, что ценность этого куска суши намного выше, чем можно было подумать еще в 2010-х. Так зачем на самом деле он нужен Трампу и может ли его отъем разрушить НАТО, как на это надеются некоторые в России?
В основе современной грамматики лежит теория, согласно которой в сознании человека язык «хранится» в виде иерархических структур — групп из двух слов, где одна составляющая зависит от другой, но вместе они образуют единое целое с точки зрения смысла. Однако лингвисты из Дании продемонстрировали, что устройство языка может быть проще: многие значимые группы слов представляют собой линейные последовательности, а не иерархии.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
