• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
18.08.2021
Сколтех
951

Ученые использовали нейронную сеть для реконструкции 3D-изображений волокнистых материалов

4.4

Исследователям Сколтеха и их коллегам из Лёвенского католического университета (Бельгия) удалось восстановить трехмерные изображения волокнистых материалов, полученных с помощью микрокомпьютерной томографии. Чтобы решить эту сложную и трудоемкую для человека задачу, ученые использовали методы машинного обучения.

Ученые использовали нейронную сеть для реконструкции 3D-изображений волокнистых материалов / ©Getty images

Полученные результаты, опубликованные в журнале Computational Materials Science, имеют важное значение для дальнейшего углубленного анализа свойств материалов. Микрокомпьютерная томография — незаменимое средство при исследовании трехмерной микроструктуры композитов, армированных волокном, и других сложных материалов. Однако использование этого метода связано с рядом дополнительных трудностей, таких как очень малые размеры образцов, наличие на изображениях артефактов и затененных областей, а также низкое качество, либо полное отсутствие отдельных фрагментов изображения.

Для решения этой непростой задачи ученые решили воспользоваться методами, которые реставраторы применяют при восстановлении произведений искусства — в частности, методом реконструирования дефектов, который уже широко применяется в цифровой обработке изображений.

«Главное преимущество реконструкции изображений на основе ИИ — быстрота. При наличии обученной модели с помощью этого метода можно обрабатывать до сотни изображений в секунду. Человеку такая скорость просто не под силу. Кроме того, компьютеры гораздо лучше справляются с обработкой трехмерных изображений, поскольку машина способна видеть их „насквозь“ и со всех сторон, мгновенно проводя реконструкцию по всему объему, а не только по поверхности», — рассказывает первый автор статьи, аспирант Сколтеха и Лёвенского католического университета Радмир Карамов.

Карамов участвует в исследованиях, проводимых под руководством директора Центра Сколтеха по проектированию, производственным технологиям и материалам (CDMM) профессора Искандера Ахатова и профессора Лёвенского католического университета Степана Ломова. Коллектив предложил использовать для задач реконструкции трехмерных изображений микрокомпьютерной томографии генеративно-состязательные сети (GAN) с 3D-кодировщиками и декодерами.

Как поясняют авторы, армирующие включения в композитных материалах, такие как волокна, могут иметь произвольную ориентацию в трех измерениях, поэтому приходится иметь дело именно с 3D-изображениями, описывающими эту сложную внутреннюю микроструктуру. Поскольку добиться необходимой точности с помощью более привычных сверточных нейронных сетей не представлялось возможным, ученые решили использовать генеративно-состязательные сети.

«При восстановлении изображений с использованием GAN нужно обучать для этой цели не одну, а две конкурирующие между собой нейронные сети: генеративную сеть, формирующую „искусственные“ изображения, которые выглядят как подлинные; и дискриминативную сеть, задача которой — отличить „настоящие“ изображения от „искусственных“.

Как говорил создатель GAN Ян Гудфеллоу, это напоминает соперничество между фальшивомонетчиками и полицейскими. Первые стремятся напечатать как можно больше фальшивых купюр, мало отличающихся по виду от настоящих, а вторые проверяют каждую купюру на предмет подлинности», — поясняет Карамов. Ученые протестировали три варианта архитектуры GAN, выбрав для этой цели изображения микрокомпьютерной томографии наиболее сложного образца — композита, армированного короткими стеклянными волокнами, не имеющего в своей структуре никаких повторов.

В результате из трех вариантов исследователи выбрали архитектуру сети, в которой наиболее удачно сочетались высокое качество реконструкции, производительность и умеренное использование памяти графического процессора. «Предложенный нами алгоритм позволяет устранять все дефекты на изображениях и, следовательно, более точно моделировать свойства материалов и прогнозировать качество конечного материала при условии устранения всех внутренних пор и пустот в его структуре в процессе производства», — подчеркивает Карамов.

Реконструкция микроструктуры материалов — первый шаг в разработке полностью автоматического генеративного алгоритма, который позволит создавать инновационные материалы со свойствами, отвечающими требованиям конкретных приложений, добавляет он.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Позавчера, 07:30
Полина

В Российской академии наук завершили первый Большой словарь ударений, его издадут к концу года. Лингвисты собрали наиболее современные нормы произношения привычных слов и зафиксировали ударение для лексики, которая появилась в русском языке недавно.

Вчера, 17:08
Ольга Иванова

Канадские исследователи изучили поведение приматов в естественной среде обитания и пришли к выводу, что те из них, кто имеет врожденные аномалии или покалечен в процессе жизни, вполне неплохо адаптируются к своим недостаткам. Они не только выживают, но и размножаются. Более того, им активно помогают сородичи.

Позавчера, 15:07
Андрей

Французские геологи проанализировали состав нитратов в вулканических отложениях времен неогена и выяснили, что возникающие в облаках пепла молнии могли фиксировать атмосферный азот. Исследователи обнаружили несколько свидетельств, указывающих на то, что нитраты в отложениях образовались именно из атмосферного азота.

Позавчера, 07:30
Полина

В Российской академии наук завершили первый Большой словарь ударений, его издадут к концу года. Лингвисты собрали наиболее современные нормы произношения привычных слов и зафиксировали ударение для лексики, которая появилась в русском языке недавно.

16 февраля
Мария Азарова

Целью нового исследования было понять, какие бактерии полости рта отвечают за продукцию метантиола, или метилмеркаптана — бесцветного токсичного газа с сильным и неприятным запахом, напоминающим зловоние гнилой капусты.

19 февраля
Полина

Подростки чаще пробуют писать музыку, если у них есть возможность получать соответствующее дополнительное образование, а также когда они чувствуют поддержку и преемственность. При этом есть пять типовых траекторий, которые приводят к собственному творчеству.

Позавчера, 07:30
Полина

В Российской академии наук завершили первый Большой словарь ударений, его издадут к концу года. Лингвисты собрали наиболее современные нормы произношения привычных слов и зафиксировали ударение для лексики, которая появилась в русском языке недавно.

1 февраля
Андрей

Канадские исследователи изучили состав пород, вышедших на поверхность при появлении первых континентов. По итогам анализа выяснилось, что новая земная кора возникла не в результате движения тектонических плит, а из-за процессов в океанических плато молодой Земли.

23 января
Алиса Гаджиева

Авторы нового исследования рассказали, какой из современных напитков надо попробовать, чтобы почувствовать себя жителем Римской империи.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: