Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Математик нашел способ решить дифференциальное уравнение, считавшееся нерешаемым с XIX века
Ученый из НИУ ВШЭ в Нижнем Новгороде и ИППИ РАН Иван Ремизов совершил концептуальный прорыв в теории дифференциальных уравнений. Ему удалось вывести универсальную формулу для решения задач, которые более 190 лет считались нерешаемыми аналитическим путем. Полученный результат радикально меняет картину мира в одной из старейших областей математики, важной для фундаментальной физики и экономики.
В средней школе на уроках математики учат, что для нахождения x в уравнении ax2+bx+c=0 нужно просто подставить коэффициенты a, b и c в готовую формулу вычисления корня уравнения через дискриминант. Это удобно, быстро и понятно. Однако в высшей математике, в которой описываются сложные процессы, используются уравнения вида ay»+ by’+cy=g. Это тоже уравнение второго порядка, но не алгебраическое, а дифференциальное.
Представьте, что вы едете на машине. Если дорога идеально ровная, а скорость постоянная, рассчитать время в пути легко. Это задача с постоянными коэффициентами. А теперь представьте, что покрытие дороги постоянно меняется, ветер дует с разной силой, угол наклона горы под колесами все время разный. В таких условиях ваша скорость и время зависят от множества меняющихся факторов.
Математически это описывается дифференциальными уравнениями второго порядка. В них на месте обычных чисел в качестве коэффициентов стоят функции — величины, которые сами постоянно меняются. А вместо простого возведения в квадрат стоит операция вычисления второй производной — математический аналог того, как резко машина разгоняется или тормозит.
Такие уравнения — это фундаментальный инструмент науки: они описывают все — от колебаний маятника и сигналов в электросетях до движения планет. И именно здесь исследователи зашли в тупик. Еще в 1834 году французский математик Жозеф Лиувилль показал, что невозможно выразить решение такого уравнения через его коэффициенты, используя стандартный набор действий: сложение и вычитание, умножение и деление, а также элементарные функции, такие как корни, логарифмы, синус, косинус, и интегралы. С тех пор в математическом сообществе укоренилось мнение, что общей формулы для их решения нет и быть не может. Задача считалась закрытой и безнадежно неразрешимой более 190 лет. Простую формулу, похожую на формулу решения квадратного уравнения через дискриминант, давно перестали искать для дифференциальных уравнений.
Старший научный сотрудник НИУ ВШЭ и ИППИ РАН Иван Ремизов предложил изящный выход. Он не стал спорить с Лиувиллем, а просто расширил набор инструментов. К стандартным математическим действиям ученый добавил еще одно — нахождение предела последовательности. Это позволило записать формулу, в которую можно подставить коэффициенты a, b, c и g уравнения ay»+ by’+cy=g, и найти его решение — функцию y. Результаты работы опубликованы во Владикавказском математическом журнале.
Метод основан на теории аппроксимаций Чернова. Суть идеи в том, что сложный, постоянно меняющийся процесс разбивается на бесконечное множество простых шагов. Для каждого такого участка строится свое приближение — элементарный фрагмент, который описывает поведение системы в конкретной точке. По отдельности эти кусочки дают лишь упрощенную картину, но, когда их число устремляется к бесконечности, они бесшовно соединяются в идеально точный график решения. Скорость сходимости приближений к точному решению можно найти с помощью оценок, которые Иван Ремизов получил вместе с коллегой Олегом Галкиным в прошлом году.
В новой статье Ремизова доказано: если применить к этим шагам преобразование Лапласа — метод, который переводит задачу с языка сложных изменений на язык обычных алгебраических вычислений, — они безошибочно фокусируются в итоговый результат. Ученые называют его резольвентой.
«Представьте, что искомое решение уравнения — это большая картина. Рассмотреть ее сразу целиком очень трудно. Но математика умеет отлично описывать процессы, развивающиеся во времени. Результатом работы стала теорема, которая позволяет “нарезать” этот процесс на множество маленьких простых кадров, а затем с помощью преобразования Лапласа собрать из этих кадров единую статичную картину — решение сложного уравнения, то есть резольвенту. Проще говоря, вместо того, чтобы гадать, как выглядит картина, теорема позволяет восстановить облик, быстро прокручивая “киноленту” ее создания», — объясняет автор работы, старший научный сотрудник Международной лаборатории динамических систем и приложений НИУ ВШЭ в Нижнем Новгороде Иван Ремизов.
Дифференциальные уравнения второго порядка используются не только для моделирования событий реального мира, но и для определения новых функций, которые нельзя задать иным образом. К ним относятся, например, так называемые специальные функции Матье и Хилла, они критически важны для понимания того, как движутся спутники на орбите или протоны в Большом адронном коллайдере.
«Единственное рабочее определение таких функций заключается в том, что они являются решениями конкретных сложных уравнений. Это как если бы вы не знали имени человека и могли описать его только через работу. Например: тот человек, который водит красный автобус по пятому маршруту. Понятно, о ком идет речь, но на практике не помогает обратиться к нему по имени», — поясняет Иван Ремизов.
Предложенный автором подход позволяет выражать решения уравнений через их коэффициенты напрямую. Благодаря этому специальные функции теперь можно задавать явными формулами подобно тому, как формула y(x)=x2 задает функцию y. Чтобы найти y(x) из этого примера, нужно число х умножить само на себя. Разумеется, для функций Матье и Хилла формулы имеют более сложную структуру, но принцип тот же: слева от знака равенства стоит величина, которую нужно найти, а справа указаны явные действия, выполнение которых приведет к ее нахождению.
При этом работа Ивана Ремизова перекидывает мостик от математики к современной физике. Ученый впервые представил решение обыкновенного дифференциального уравнения в виде формулы, аналогичной знаменитым интегралам нобелевского лауреата Ричарда Фейнмана, с помощью которых описывают движение квантовых частиц. То, что раньше работало для квантовой механики, теперь применимо к классическим задачам.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
В зоопарках звери доживают до старости и выбывают из программ глобального сохранения видов, потому что не могут размножаться. Это ставит под угрозу усилия по поддержанию популяций редких видов.
Злокачественные новообразования выделили белок цистатин-С, который проник в мозг и активировал иммунные клетки, начавшие активно уничтожать токсичные амилоидные бляшки. Молекула опосредованно очистила нервную систему от застарелых отложений, вызывающих болезнь Альцгеймера, и вернула память лабораторным мышам.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
В зоопарках звери доживают до старости и выбывают из программ глобального сохранения видов, потому что не могут размножаться. Это ставит под угрозу усилия по поддержанию популяций редких видов.
Вопреки множеству оценок из СМИ, самый крупный остров мира небогат полезными ископаемыми, но и никак не «бесполезный кусок льда». Открытия датских ученых последних лет показывают, что ценность этого куска суши намного выше, чем можно было подумать еще в 2010-х. Так зачем на самом деле он нужен Трампу и может ли его отъем разрушить НАТО, как на это надеются некоторые в России?
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
