Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Школьники поставили нейросеть в тупик
Ученые из Сколтеха и их коллеги рассказали, как образовательный проект для школьников вылился в новую главу противостояния искусственного интеллекта и человека в биоинформатике. Согласно исследованию, ранее совершившая прорыв в предсказании структур белков программа, разработанная подразделением Google DeepMind, не способна решить другую задачу структурной биоинформатики. При этом было получено свидетельство, которое всерьез ставит под вопрос гипотезу о том, что ИИ смог «выучить физику» белков.
Результаты представлены в статье, недавно опубликованной в журнале PLOS One. Структурная биоинформатика — научная область, в которой предсказываются структуры белков, РНК, ДНК и их взаимодействия с другими молекулами. Полученные знания ложатся в основу разработки лекарств или, например, белков — катализаторов реакций, не встречающихся в живой природе.
Последние годы в структурной биоинформатике развернулось противостояние человека и машины: вызов ученым бросил игровой искусственный интеллект компании DeepMind. С тех пор как в 2014 году ее приобрел Google, программы DeepMind показали выдающиеся результаты среди прочего в шахматах, го и StarCraft II и в итоге добрались до вполне реальной задачи предсказания структуры белков по аминокислотной последовательности.
Искусственный интеллект AlphaFold оказался столь успешен в решении этой проблемы, что к 2021 году многие стали всерьез пророчить конец структурной биоинформатики. Казалось, машине удалось выучить саму фундаментальную физику белка, и теперь ей должны автоматически покориться остальные задачи в этой области.
«Мы решили проверить, так ли это, и применили AlphaFold к другой типичной для нашей науки задаче — предсказанию изменения стабильности белка вследствие одиночной мутации. То есть вы берете некоторый известный белок, вносите в него минимально возможное изменение и хотите знать, полученный мутант будет стабильнее или нестабильнее и насколько. Так вот, с этой задачей AlphaFold не справился: предсказания никак не согласуются с известными экспериментальными данными. Собственно, его создатели и не утверждали, что AlphaFold пригоден для чего-то, кроме предсказания структуры белков по аминокислотной последовательности, но ряд оптимистов ожидали прорыва и здесь — мы же показали обратное», — прокомментировал исследование его научный руководитель, старший преподаватель Центра молекулярной и клеточной биологии Сколтеха Дмитрий Иванков.
С практической точки зрения предсказывать изменение стабильности белка после мутации важно: например, чтобы перебором мутаций находить устойчивые к высоким температурам варианты белков с полезными свойствами. Это может быть, к примеру, белок для стирального порошка, который будет расщеплять разного рода загрязнения — другие белки, жиры, крахмал, микроворсинки, — или сладкий белок, который можно было бы положить в горячий чай вместо сахара.
Но здесь важно в том числе само по себе заключение авторов статьи, что в существующем сегодня виде ИИ не панацея. Хотя он отлично справился с важнейшей проблемой структурной биоинформатики, которая занимала ученых больше полувека, остается еще с десяток нерешенных проблем. Например, предсказание структур комплексов белков с малыми молекулами, ДНК или РНК, мутаций в белке и их влияния на энергию связывания с другими молекулами, белковый дизайн: какая нужна последовательность, чтобы сделать белок с некоторыми желаемыми свойствами, допустим, катализатор, который может стать элементом крошечной «молекулярной фабрики».
Помимо очевидного вывода, что структурную биологию рано «закрывать», исследование косвенно опровергает гипотезу, что AlphaFold не просто усвоил все накопленные человечеством структуры белков и ловко ими оперирует, но и смог каким-то образом выучить саму фундаментальную физику белков. Этим порой объясняли его успех, однако, будь это так, программе не составило бы труда сопоставить две очень похожие структуры с точки зрения стабильности, а именно это оказалось ИИ не под силу.
Этот довод дополняет два ранее озвученных сомнения касательно «знания физики». Во-первых, AlphaFold предсказывает некоторые структуры, у которых боковые группы ориентированы так, будто к ним привязан ион цинка. Но программа получает на вход только аминокислотную последовательность белка, то есть «незримый цинк» в результатах ощущается, поскольку в обучающих данных были аналогичные структуры белков, связанные с этим ионом.
Без него предсказанная ориентация боковых групп физически некорректна. Во-вторых AlphaFold предсказывает одиночную структуру витиеватой цепи, которая выглядит для ученого правдоподобно, но лишь если мысленно достроить еще две такие же цепи и переплести их вместе, иначе эта конструкция, опять же, несостоятельна с точки зрения физики. То есть программа запомнила и воспроизвела соответствующую структуру, которую вычленила из составной конструкции, — законами физики она себя при этом не ограничивает.
«Занятно, что наше исследование выросло из „игрушечного“ проекта с участниками Школы молекулярной и теоретической биологии. Проект так и назывался: „Игры с АльфаФолд“. Как только AlphaFold был выложен в открытый доступ, мы в нашей лаборатории установили его на сколтеховский суперкомпьютер „Жорес“. Одна из игр заключалась в сопоставлении эффекта мутации с предсказаниями AlphaFold для структуры исходного и мутантного белка. Так и получилось исследование, в котором школьники соприкоснулись с суперкомпьютером и передовым искусственным интеллектом», — рассказала первый автор статьи, аспирант Сколтеха Марина Пак.
Помимо биоинформатиков из Сколтеха, в исследовании участвовали ученые из Института науки и технологий Австрии и Окинавского института науки и технологий (Япония), а также школьники, которые сейчас учатся в Российском университете дружбы народов, Уральском федеральном университете и Западноамериканском колледже объединенного мира имени Арманда Хаммера (США).
В основе современной грамматики лежит теория, согласно которой в сознании человека язык «хранится» в виде иерархических структур — групп из двух слов, где одна составляющая зависит от другой, но вместе они образуют единое целое с точки зрения смысла. Однако лингвисты из Дании продемонстрировали, что устройство языка может быть проще: многие значимые группы слов представляют собой линейные последовательности, а не иерархии.
Австралийские геологи нашли новые доказательства того, что мегалиты попали на равнину Солсбери благодаря сложной логистике древних строителей. Изучив минеральный состав почвы вокруг монумента, исследователи исключили возможность того, что огромные глыбы принесло туда движение ледников.
Крупнейшие живые организмы девонского периода — прототакситы — не относились ни к грибам, ни к растениям, ни к лишайникам. Комплексный химический и структурный анализ помог выявить, что это ранее неизвестная и полностью вымершая ветвь биологической эволюции.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
