Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые распознали злоумышленников в шумах
Группа ученых из Московского физико-технического института и Казанского национального исследовательского технологического университета имени А. Н. Туполева разрабатывает математический аппарат, способный привести к прорыву в области сетевой безопасности.
Результаты работы опубликованы в журнале Mathematics. Сложные системы, такие как сетевой трафик или живые организмы, не обладают детерминированными физическими законами для их точного описания и предсказания дальнейшего поведения. В этом случае важную роль играет корреляционный анализ, который описывает поведение системы в терминах наборов статистических параметров.
Описывают такие сложные системы бестрендовые последовательности, часто определяемые как долгосрочные временные ряды или «шум». Они представляют собой колебания, создаваемые совокупностью различных источников, и являются одними из наиболее сложных данных для анализа и извлечения надежной, стабильной информации.
Одна из метрик, используемых в экономике и естественных науках при анализе временных рядов — показатель Хёрста. Он позволяет предположить, сохранится ли тренд, присутствующий в данных. Например, продолжат ли значения возрастать, или рост сменится убыванием. Это предположение выполняется для многих природных процессов и объясняется инертностью природных систем.
Скажем, изменение уровня воды в озере, которое согласуется с прогнозами, выведенным из анализа значения показателя Хёрста, определяется не только текущим количеством воды, но и интенсивностью испарения, выпадением осадков, таянием снега и так далее. Все перечисленное — растянутый во времени процесс.
Уловить кибератаку
Объем трафика, проходящего через сетевые устройства, чудовищен. Это касается и конечных аппаратов — домашних персональных компьютеров, но особенно — промежуточных, таких как маршрутизаторы, а также высоконагруженных серверов. Часть этого трафика, например, видеоконференцсвязь, необходимо отправить с максимальным приоритетом, тогда как отправка файлов может и подождать. А может быть, это торрент-трафик, который забивает узкий канал. Или вовсе — идет сетевая атака, и ее нужно блокировать.
Анализ трафика требует вычислительных ресурсов, места для хранения (буфера) и времени — задержки в передаче. Все это в дефиците, особенно если дело касается маломощных промежуточных устройств. В настоящее время используются либо относительно простые методы машинного обучения, которые страдают от недостатка точности, либо методы глубоких нейронных сетей, которые требуют достаточно мощных вычислительных станций с большим объемом памяти просто для разворачивания инфраструктуры для запуска, не говоря уже о самом анализе.
Идея, лежащая в основе работы группы ученых под руководством Равиля Нигматуллина, достаточно проста: обобщить показатель Хёрста, добавив в него большее количество коэффициентов, чтобы получить более полное описание изменяющихся данных. Это позволяет находить закономерности в данных, которые принято считать шумами и которые ранее было невозможно анализировать. Таким образом удается производить «на лету» выделение значимых признаков и применять элементарные методы машинного обучения для поиска сетевых атак. В совокупности получается точнее тяжелых нейронных сетей, и такой подход можно разворачивать на маломощных промежуточных устройствах.
«Шум» — это то, что принято отбрасывать, но выделение закономерностей в «шумах» может быть очень полезным. Так, учеными был проведен анализ тепловых шумов передатчика в системе связи. Этот математический аппарат позволил выделить из данных набор параметров, характеризующих конкретный передатчик. Это может стать решением одной из задач криптографии: Алиса посылает сообщения Бобу, Чак — злоумышленник, который пытается выдать себя за Алису и отправить Бобу сообщение. Бобу нужно отличить сообщение от Алисы от сообщения от Чака.
Работа с данными глубоко проникает во все сферы человеческой жизни, алгоритмы распознавания изображений и речи давно перешли из разряда научной фантастики во что-то, с чем мы сталкиваемся ежедневно. Данный метод описания позволяет получать признаки сигнала, которые могут использоваться в машинном обучении, существенно упрощая и ускоряя системы распознавания и улучшая точность решений.
Александр Ивченко, сотрудник лаборатории мультимедийных систем и технологий МФТИ, один из авторов разработки, говорит: «Развитие данного математического аппарата может решить вопрос параметризации и анализа процессов, для которых нет точного математического описания. Это открывает огромные перспективы в описании, анализе и прогнозировании сложных систем».
Термояд начнет вырабатывать электричество через 20 лет — так говорили с 1950-х, но этого все так и не происходит. Почему? В чем принципиальные сложности на этом пути? Чего добивается «Росатом» в проекте ИТЭР и почему параллельно уже начал работу по российскому термоядерному реактору ТРТ? Руководитель проектного офиса по управляемому термоядерному синтезу «Наука и инновации» госкорпорации «Росатом» Андрей Аникеев ответил на наши вопросы.
Исследователи Центра декарбонизации АПК и региональной экономики Кабардино-Балкарского государственного университета имени Х.М. Бербекова совершили фундаментальное открытие, меняющее десятилетия устоявшихся представлений о жизнедеятельности растений. Ученые доказали, что корневая система растений способна напрямую поглощать диоксид углерода (CO₂) из почвы. Это вносит кардинальные изменения в понимание глобального углеродного цикла.
В горах Южной Америки находится более пяти тысяч ям искусственного происхождения. На протяжении почти века ученые пытались выяснить, для чего их использовали, но все попытки были тщетными. Выдвигали десятки гипотез — от гигантских могильников до систем сбора воды. К разгадке тайны приблизились авторы нового исследования.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Испанские исследователи проанализировали популярные в соцсетях фото и видео с дикими животными, сгенерированные с помощью искусственного интеллекта. Специалисты пришли к выводу, что такого рода реалистичные, но фейковые материалы способны навредить как людям, так и животному миру, поскольку они вводят в заблуждение и подрывают усилия по сохранению дикой природы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
