Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Разработка ученых поможет в решении проблемы продовольствия
Факультет цифровой экономики и массовых коммуникаций МТУСИ в составе международной коллаборации принял участие в разработке системы компьютерного зрения в интеллектуальной отраслевой робототехнике, позволяющей существенно повысить производительность агробизнеса. В частности, специалисты обучили нейронную сеть распознавать несобранные яблоки в садах.
Сегодня наблюдается стремительный всплеск использования систем искусственного интеллекта в различных сферах экономики. Агробизнес является одной из сфер, подвергающихся быстрой цифровизации. Согласно отчету ООН, численность населения Земли будет быстро расти в ближайшие 30–50 лет; в частности, к 2050 году ожидается, что оно достигнет 10 миллиардов человек. При этом возникают вопросы об обеспечении такого количества жителей продовольствием.
Решение этой проблемы невозможно без повышения эффективности в сфере сельского хозяйства. В научных исследованиях и разработках ученых большое внимание уделяется аспектам цифровизации устойчивых агропродовольственных систем и прогнозирования рисков с учетом новой коронавирусной инфекции на Ближнем Востоке и в Северной Африке. Следует отметить, что наряду с потенциальными проблемами будущего дефицита продовольствия сегодня существует еще одна проблема, связанная с тем, что часть урожая остается неубранной. Важной причиной того, что несобранные плоды портятся в садах, на дачах и в агрохолдингах, является низкая окупаемость инвестиций.
Эти доводы позволяют сделать вывод, что одно из перспективных направлений развития аграрной отрасли — внедрение роботизированных решений, в том числе быстрого, качественного и надежного сбора урожая. При этом ключевую роль в таких роботах должна играть интеллектуальная система анализа изображений, которая разрабатывается, в частности, для задач идентификации и пространственного расположения плодов.
В научной разработке российских ученых для системы распознавания яблок в садах была выбрана архитектура нейронной сети YOLOv3, включающая класс apple в один из 80 распознаваемых классов. Решение этой задачи основано на методах компьютерной оптики и использовании камеры Intel Real Sense Depth Camera D415, которая, помимо регистрации оптического изображения в цветовых каналах яркости, также строит карту глубины.
Во-первых, необходимо обеспечить высокие значения метрик распознавания и обнаружения плодов. Во-вторых, требуется обеспечить низкие ошибки определения пространственного положения яблока относительно робота. В-третьих, требуются эффективные алгоритмы обхода урожая, позволяющие собирать плоды максимально без повреждений. Дальнейшее исследование было связано с работой нейронных сетей, используемых в задачах обнаружения и распознавания образов. Нейросети сегодня широко используются в агробизнесе, в том числе для распознавания плодов на дереве. В результате представлено аппаратно-программное решение задачи оценки координат яблока в реальном пространстве.
Отдельное внимание уделено исследованию ошибок, полученных в результате представленного решения. Следует отметить, что в разработке использовалась известная нейронная сеть, и исследователи не ставили задачу разработки и обучения алгоритма обнаружения яблок, а рассматривали новое приложение архитектуры YOLOv3, модифицированное под эту задачу.
«К научной новизне работы можно отнести представленный алгоритм совместного обнаружения, распознавания яблок и оценки их относительных координат. В результате исследования было предложено использовать нейронную сеть YOLOv3 для решения задачи обнаружения и распознавания изображений. В то же время класс apple был расширен некоторыми подобными объектами. Оптимальный порог вероятности получения высоких показателей точности и отзыва составляет 0,2–0,3.
При этом значение метрики Recall близко к 90 процентам, ложных срабатываний нет. Координаты объекта рассчитываются путем оптического преобразования относительных координат в пространстве пикселей изображения в реальные координаты с использованием карт глубины Intel Real Sense. Анализ показал, что среднеквадратические ошибки измерения координат невелики. Все ошибки составляют в среднем около 7–12 миллиметров.
Однако ошибка увеличивается с удалением объектов от камеры, что может быть связано с ее наклоном. В дальнейшем планируется дополнительно учитывать этот источник ошибок. Кроме того, средняя производительность составляет около 2,5 кадров в секунду», — рассказал Сергей Гатауллин из Московского технического университета связи и информатики. Прототип индустриального решения получил высокую оценку научного сообщества. Полный текст исследования опубликован в научном журнале Symmetry.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
Недавно опубликованный план терраформирования Красной планеты предусматривает насыщение ее воздуха кислородом на 99%. При этом атмосферное давление должно будет стать примерно таким, как на высоте около 13-14 километров над Землей. Специалисты считают, что в такой среде можно дышать. Более того, у них есть конкретный план по достижению этой цели.
Это произошло несмотря на то, что компания сознательно ослабила теплозащиту корабля, в том числе в самых критических местах. Впервые нормально отработала штатная система вывода в космос полезной нагрузки: туда доставили восемь макетов спутников общей массой 16 тонн. Испытания стали последним полетом Starship V2. Начиная со следующего полета, в космос отправятся Starship V3.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
Недавно опубликованный план терраформирования Красной планеты предусматривает насыщение ее воздуха кислородом на 99%. При этом атмосферное давление должно будет стать примерно таким, как на высоте около 13-14 километров над Землей. Специалисты считают, что в такой среде можно дышать. Более того, у них есть конкретный план по достижению этой цели.
Креативность чаще всего ассоциируется с творчеством и искусством. Однако не всегда креатив направлен на благо. Например, схемы мошенников тоже можно назвать креативными, хотя они служат обману и личной выгоде. Такое «творчество» называют антисоциальным. К нему также относятся склонность ко лжи, оригинальной мести, злобным шуткам и розыгрышам, мошенничеству, дезинформации, политическим манипуляциям, слухам и домыслам. Психологи МГППУ рассмотрели особенности восприятия и понимания информации у людей с высокой антисоциальной креативностью и сравнили с характеристиками тех, кто обладает положительными чертами личности, в частности чертами Светлой триады — согласия, прощения и доброжелательности.
Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.
Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.
Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии