Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Проводящие клетки сердечной ткани способны к самоорганизации
Биофизики из МФТИ и Гентского университета выяснили, что сердечная ткань, несмотря на высокое содержание невозбудимых клеток, все-таки может проводить возбуждение.
Сердце сокращается благодаря распространению электрических волн в сердечной ткани. Нарушение нормального режима распространения таких волн может стать причиной сердечной аритмии, асинхронных сердечных сокращений и даже способно привести к остановке сердца или внезапной сердечной смерти.
Биофизики из МФТИ и Гентского университета (Бельгия) выяснили, что сердечная ткань, несмотря на высокое содержание невозбудимых клеток (до 75%), все-таки может проводить возбуждение.
Это происходит благодаря взаимодействию возбудимых сердечных клеток — кардиомиоцитов — и образованию ими разветвленной проводящей сети. Работа опубликована в журнале PLOS Computational Biology.
Как уже упоминалось выше, генераторами и проводниками электрических волн в сердце служат возбудимые клетки — кардиомиоциты. Кроме кардиомиоцитов, в сердечной ткани есть клетки соединительной ткани, которые не передают возбуждение.
К ним относятся, например, фибробласты. В сердце здорового человека фибробласты поддерживают его структурную целостность и участвуют в устранении повреждений.

При инфаркте и некоторых других сердечных заболеваниях и патологиях кардиомиоциты умирают — их место занимают фибробласты. Этот процесс можно сравнить с образованием шрамов при повреждении кожных покровов.
Чрезмерное содержание фибробластов в сердечной ткани мешает распространению электрических сигналов. Такое нарушение называется сердечным фиброзом, именно оно является частой причиной аритмии.Парадокс фиброзной ткани
Непроводящие клетки — фибробласты — являются препятствием для движения электрической волны. Пытаясь обойти препятствие, волна начинает его огибать, что может приводить к циркуляции возбуждения — возникновению вращающейся спиральной волны.
Такое явление называется ре-энтри и вызывает аритмию. Можно предположить, что высокая плотность фибробластов в сердечной ткани способствует формированию ре-энтри по двум причинам.
Во-первых, фибробласты выступают в роли неоднородностей, которые препятствуют проведению электрического сигнала. Во-вторых, высокое содержание фибробластов строит своеобразный «лабиринт» для волн, и они следуют по более длинному зигзагообразному пути.
Критическая плотность непроводящих клеток, выше которой сердечная ткань не должна проводить возбуждение, называется порогом перколяции. Его вычисляют с помощью теории перколяции — математического метода описания возникновения связных структур, в качестве которых в этой задаче выступают случайно распределенные проводящие и непроводящие клетки сердечной ткани.
Согласно расчетам, сердечная ткань должна терять проводимость для электрических волн, если фибробластов в ней станет более 40%. Парадокс в том, что, по данным экспериментов, образцы ткани с содержанием фибробластов, много превышающим порог перколяции (65–75%), все еще проводят электрические сигналы.
Это означает, что должен существовать механизм, ответственный за проводниковую самоорганизацию кардиомиоцитов.
Чтобы разрешить этот парадокс, ученые совместили эксперименты in vitro — в искусственно смоделированной среде — на монослое сердечных клеток новорожденных крыс с экспериментами in silico — в полностью смоделированной на компьютере биологической системе — на морфологической и электрофизиологической компьютерной модели сердечной ткани.Гипотеза выравнивания цитоскелетов
Кардиомиоциты сердца представляют собой синцитий — функциональное объединение большого числа тесно взаимосвязанных клеток. За счет такого объединения возбуждение только одной клетки приводит к распространению по всем клеткам сердечного синцития.

Группой исследователей была выдвинута никогда не рассматриваемая ранее гипотеза: в фиброзной ткани кардиомиоциты выравнивают свои цитоскелеты для образования единого синцития вместе с остальной сердечной тканью.
«Мы фиксировали распространение электрической волны в 25 монослойных образцах сердечной ткани с разным процентным содержанием кардиомиоцитов и фибробластов. Так из экспериментов in vitro нам удалось рассчитать порог перколяции — оказалось, он составляет 75% фибробластов.
Это число сильно отличается от предсказанных с помощью теории перколяции или других классических математических моделей 40%. Далее мы заметили, что кардиомиоциты в образцах располагаются не случайным образом, а собираются в разветвленную проводящую сеть.
Учет этого факта помог воспроизвести полученные in vitro результаты с прогнозами in silico в компьютерной модели», — поясняет профессор Константин Агладзе, руководитель лаборатории биофизики возбудимых систем МФТИ.
Благодаря такому предположению в рамках компьютерной модели удалось успешно воспроизвести не только морфологию проводящих путей, но и наблюдаемые в экспериментах in vitro спад скорости и высокий порог перколяции.
Дальнейшие исследования самоорганизации кардиомиоцитов в структуры, проводящие электрические сигналы, могли бы найти применение в поиске способов лечения аритмии и изготовлении лекарств, нормализующих нарушения сердечного ритма.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Палеонтологи описали крупнейшее в мире скопление следов динозавров: более 16 000 вмятин на площади 7500 квадратных метров. Ученые считают, что эта территория была не просто местом случайных прогулок, а оживленной трассой, где динозавры организованно мигрировали вдоль берега древнего озера.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
