• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
16 мая, 12:15
Unitsky String Technologies Inc.
87

От вспышки до алгоритма: как работает система мониторинга электрогидроразрядов?

❋ 4.5

Специалисты UST Inc. разработали уникальный программно-аппаратный комплекс (ПАК) для мониторинга высоковольтных импульсов, вызывающих электрогидравлический эффект в жидкостях различной проводимости. Это сложная система, которая включает датчики тока, напряжения, скоростную камеру, синхронизаторы и программное обеспечение, анализирующее сотни импульсов.

Пример электрического разряда в различное время его жизни / © Unitsky String Technologies Inc

Зачем это нужно?

Электрогидравлический эффект — физическое явление, при котором электрический разряд вызывает образование ударной волны, которая, в свою очередь, выполняет полезную работу, например дробление стекла, угля, торфа, растительных отходов, нерудных и других материалов, обогащение руд, извлечение остаточных полезных ископаемых из отвалов, обеззараживание воды, механоактивацию строительных материалов и так далее.

Этот эффект используется в разработанной белорусскими инженерами UST Inc. электрогидроударной установке UniThorr,  которая применяется компанией для тонкого измельчения природных ископаемых (бурый уголь, торф, горючие сланцы), извлечения редких химических элементов, получения водоугольного топлива, очистки и обеззараживания жидкостей и так далее.

При каждом электрическом разряде необходимо получать информацию о множестве параметров: от величины пикового тока до формы разрядного канала. Чтобы управлять электрическим разрядом, нужно не просто научиться измерять электрические параметры импульса, но и в реальном времени отслеживать поведение разряда внутри рабочей среды.

Почему это так сложно?

Во-первых, процесс образования и распространения разряда в жидкости очень быстротечный – разряд длится доли микросекунды, а амплитуда тока может достигать десятков килоампер и вносит помехи в электромагнитные каналы. Во-вторых, во время электрогидравлического разряда возникают ударные волны со сверхзвуковыми скоростями и давлением до 65 МПа – они деформируют среду, создают кавитацию.

Изображения явлений, происходящих в жидкости при электрогидравлическом эффекте / © Unitsky String Technologies Inc

А специализированных приборов, способных работать одновременно, снимая все необходимые параметры процесса, и выдерживать электромагнитные помехи, не выходя из строя, не существует.

Для надежной фиксации процесса разработчики использовали специально созданные электромагнитные датчики, датчики давления, тока и напряжения, а также на первых этапах исследования применяли скоростную видеосъемку, позволяющую увидеть процесс возникновения стримера (канала разряда) в жидкости и сопоставить его с данными, полученными с датчиков.

Сделать это было непросто из-за скоротечности процессов, работы с высоким напряжением и при значительном уровне электромагнитных помех.

Что удалось выяснить?

На первый взгляд, разряд в жидкости – это просто «вспышка и хлопок». Но если заглянуть внутрь этой вспышки с помощью скоростной камеры и различных датчиков, открывается целый микромир. Ученые UST Inc. обнаружили, что на процесс возникновения и дальнейшего развития электрического разряда в жидкости напрямую оказывают воздействие множество факторов — от формы электродов до степени минерализации воды.

Результатом подготовительной работы по созданию ПАК стала визуальная фиксация разрядов и их классификация.

● Пузырьковый стример. Разряд начинается в микроскопических пузырьках газа, которые уже есть в жидкости. Под действием высокого напряжения внутри пузырьков возникает ионизация, после чего они раздуваются и становятся стартовой точкой для канала. Этот тип характерен для недегазированной воды и относительно долгих импульсов.

● Микровзрывной. Вода у поверхности электрода вскипает от локального нагрева, образуется пар, и в этом пару происходит разряд. Возникает мощная ударная волна – словно мини-взрыв. Такой механизм часто работает в установках с острыми электродами и очень высоким напряжением.

● Ионизационный. Здесь нет пузырьков или пара – разряд происходит прямо в жидкости благодаря гигантскому перенапряжению и сверхкороткому фронту импульса. Канал распространяется со скоростью до 200 км/с (!) и напоминает фрактальное дерево.

● Электротепловой. Разряд развивается медленно, от постепенного нагрева жидкости. Разрядный канал получается более толстым и стабильным, но требует высоких энергозатрат.

Вид разряда определяет не только значение электрических параметров, но и эффективность работы всей установки. Например, ионизационный стример дает резкий, мощный импульс с короткой продолжительностью, а микровзрывной сопровождается сильной ударной волной и резким скачком давления. Пузырьковый стример наиболее непредсказуем, но может обеспечивать мягкое разрушение структуры обрабатываемого материала.

Благодаря высокой точности регистрации данных,  синхронизации всех датчиков и скоростной видеосъемке, инженеры смогли установить зависимость между типом разряда, характеристиками импульса и конечным результатом воздействия. Это открыло путь к следующему шагу – созданию алгоритмов мониторинга и анализа эффективности работы импульса с возможностью дальнейшей корректировки работы установки в реальном времени.

Фактически речь идет о возможности управления процессом, то есть оператор может создавать условия для требуемого эффекта и формировать цифровой отпечаток разряда – сигнал, по которому система определяет, что именно будет происходить в рабочей камере установки: мощный удар, некачественный разряд или идеальный по форме и энергии импульс. ПАК не только фиксирует это, но и предлагает оператору возможные варианты корректировки режима дальнейшей работы установки в реальном времени.

Таким образом, из хаоса и случайности электрогидравлический эффект превращается в управляемый инструмент – точный, надежный и адаптивный. То, что раньше было «ударом наугад», стало высокотехнологичным процессом с предсказуемым результатом.

Почему это важно?

Теперь оператор установки UniThorr с помощью алгоритмов, предлагаемых комплексом, может настраивать систему на режимы с максимальной эффективностью и безопасностью. Это повышает производительность, снижает износ оборудования, уменьшает энергозатраты и делает сам процесс более предсказуемым и управляемым.

У разработки большие перспективы. Такой подход может найти применение в энергетике, сельском хозяйстве, медицине, добыче полезных ископаемых и в области охраны окружающей среды. Все, что требует мощного, точечного, но контролируемого электрогидравлического воздействия, становится зоной применения UniThorr под контролем ПАК.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
29 сентября, 15:09
Адель Романова

Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.

27 сентября, 14:07
Игорь Байдов

Резкий крен, падение в воздушную яму и тревожный сигнал ремней безопасности — знакомые ощущения для любого, кто часто летает. Для миллионов пассажиров турбулентность остается главным источником дискомфорта и страха в полете. Но авторы нового исследования обещают перевести ее из разряда непредсказуемых явлений в область точной науки. Они заявили о создании, возможно, самой передовой математической модели турбулентности, которая поможет сделать полет гораздо спокойнее.

29 сентября, 07:55
Игорь Байдов

Одни романы, едва появившись на свет, мгновенно взрывают чарты книжных рейтингов, но через пару лет о них забывают все, кроме литературоведов. Другие, не так удачно стартовавшие в год публикации, продолжают завоевывать сердца новых читателей даже спустя век. В чем их секрет? Оказывается, разгадка кроется не только в сюжете, но и в самой ткани повествования.

26 сентября, 11:41
ИИМК РАН

Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.

29 сентября, 15:09
Адель Романова

Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.

27 сентября, 14:07
Игорь Байдов

Резкий крен, падение в воздушную яму и тревожный сигнал ремней безопасности — знакомые ощущения для любого, кто часто летает. Для миллионов пассажиров турбулентность остается главным источником дискомфорта и страха в полете. Но авторы нового исследования обещают перевести ее из разряда непредсказуемых явлений в область точной науки. Они заявили о создании, возможно, самой передовой математической модели турбулентности, которая поможет сделать полет гораздо спокойнее.

20 сентября, 08:52
Александр Березин

Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.

12 сентября, 14:03
ТюмГУ

Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.

9 сентября, 11:03
Адель Романова

Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно