Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
От вспышки до алгоритма: как работает система мониторинга электрогидроразрядов?
Специалисты UST Inc. разработали уникальный программно-аппаратный комплекс (ПАК) для мониторинга высоковольтных импульсов, вызывающих электрогидравлический эффект в жидкостях различной проводимости. Это сложная система, которая включает датчики тока, напряжения, скоростную камеру, синхронизаторы и программное обеспечение, анализирующее сотни импульсов.
Зачем это нужно?
Электрогидравлический эффект — физическое явление, при котором электрический разряд вызывает образование ударной волны, которая, в свою очередь, выполняет полезную работу, например дробление стекла, угля, торфа, растительных отходов, нерудных и других материалов, обогащение руд, извлечение остаточных полезных ископаемых из отвалов, обеззараживание воды, механоактивацию строительных материалов и так далее.
Этот эффект используется в разработанной белорусскими инженерами UST Inc. электрогидроударной установке UniThorr, которая применяется компанией для тонкого измельчения природных ископаемых (бурый уголь, торф, горючие сланцы), извлечения редких химических элементов, получения водоугольного топлива, очистки и обеззараживания жидкостей и так далее.
При каждом электрическом разряде необходимо получать информацию о множестве параметров: от величины пикового тока до формы разрядного канала. Чтобы управлять электрическим разрядом, нужно не просто научиться измерять электрические параметры импульса, но и в реальном времени отслеживать поведение разряда внутри рабочей среды.
Почему это так сложно?
Во-первых, процесс образования и распространения разряда в жидкости очень быстротечный – разряд длится доли микросекунды, а амплитуда тока может достигать десятков килоампер и вносит помехи в электромагнитные каналы. Во-вторых, во время электрогидравлического разряда возникают ударные волны со сверхзвуковыми скоростями и давлением до 65 МПа – они деформируют среду, создают кавитацию.
А специализированных приборов, способных работать одновременно, снимая все необходимые параметры процесса, и выдерживать электромагнитные помехи, не выходя из строя, не существует.
Для надежной фиксации процесса разработчики использовали специально созданные электромагнитные датчики, датчики давления, тока и напряжения, а также на первых этапах исследования применяли скоростную видеосъемку, позволяющую увидеть процесс возникновения стримера (канала разряда) в жидкости и сопоставить его с данными, полученными с датчиков.
Сделать это было непросто из-за скоротечности процессов, работы с высоким напряжением и при значительном уровне электромагнитных помех.
Что удалось выяснить?
На первый взгляд, разряд в жидкости – это просто «вспышка и хлопок». Но если заглянуть внутрь этой вспышки с помощью скоростной камеры и различных датчиков, открывается целый микромир. Ученые UST Inc. обнаружили, что на процесс возникновения и дальнейшего развития электрического разряда в жидкости напрямую оказывают воздействие множество факторов — от формы электродов до степени минерализации воды.
Результатом подготовительной работы по созданию ПАК стала визуальная фиксация разрядов и их классификация.
● Пузырьковый стример. Разряд начинается в микроскопических пузырьках газа, которые уже есть в жидкости. Под действием высокого напряжения внутри пузырьков возникает ионизация, после чего они раздуваются и становятся стартовой точкой для канала. Этот тип характерен для недегазированной воды и относительно долгих импульсов.
● Микровзрывной. Вода у поверхности электрода вскипает от локального нагрева, образуется пар, и в этом пару происходит разряд. Возникает мощная ударная волна – словно мини-взрыв. Такой механизм часто работает в установках с острыми электродами и очень высоким напряжением.
● Ионизационный. Здесь нет пузырьков или пара – разряд происходит прямо в жидкости благодаря гигантскому перенапряжению и сверхкороткому фронту импульса. Канал распространяется со скоростью до 200 км/с (!) и напоминает фрактальное дерево.
● Электротепловой. Разряд развивается медленно, от постепенного нагрева жидкости. Разрядный канал получается более толстым и стабильным, но требует высоких энергозатрат.
Вид разряда определяет не только значение электрических параметров, но и эффективность работы всей установки. Например, ионизационный стример дает резкий, мощный импульс с короткой продолжительностью, а микровзрывной сопровождается сильной ударной волной и резким скачком давления. Пузырьковый стример наиболее непредсказуем, но может обеспечивать мягкое разрушение структуры обрабатываемого материала.
Благодаря высокой точности регистрации данных, синхронизации всех датчиков и скоростной видеосъемке, инженеры смогли установить зависимость между типом разряда, характеристиками импульса и конечным результатом воздействия. Это открыло путь к следующему шагу – созданию алгоритмов мониторинга и анализа эффективности работы импульса с возможностью дальнейшей корректировки работы установки в реальном времени.
Фактически речь идет о возможности управления процессом, то есть оператор может создавать условия для требуемого эффекта и формировать цифровой отпечаток разряда – сигнал, по которому система определяет, что именно будет происходить в рабочей камере установки: мощный удар, некачественный разряд или идеальный по форме и энергии импульс. ПАК не только фиксирует это, но и предлагает оператору возможные варианты корректировки режима дальнейшей работы установки в реальном времени.
Таким образом, из хаоса и случайности электрогидравлический эффект превращается в управляемый инструмент – точный, надежный и адаптивный. То, что раньше было «ударом наугад», стало высокотехнологичным процессом с предсказуемым результатом.
Почему это важно?
Теперь оператор установки UniThorr с помощью алгоритмов, предлагаемых комплексом, может настраивать систему на режимы с максимальной эффективностью и безопасностью. Это повышает производительность, снижает износ оборудования, уменьшает энергозатраты и делает сам процесс более предсказуемым и управляемым.
У разработки большие перспективы. Такой подход может найти применение в энергетике, сельском хозяйстве, медицине, добыче полезных ископаемых и в области охраны окружающей среды. Все, что требует мощного, точечного, но контролируемого электрогидравлического воздействия, становится зоной применения UniThorr под контролем ПАК.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.
Команда исследователей из Италии и США предложила два способа, с помощью которых гипотетический зонд сможет быстро добраться до одного из самых отдаленных и малоизученных объектов Солнечной системы. Речь о Седне — транснептуновом теле, которое находится за орбитой Плутона. По мнению инженеров, эти передовые технологии смогут доставить аппарат к Седне за семь и 10 лет.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии