Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект ускорил поиск материалов для авиации и космоса
Ученые из Сколтеха и МФТИ при помощи машинного обучения заметно ускорили поиск кандидатов металлических сплавов, из которых экспериментаторы отбирают материалы для ракетостроения и других высокотехнологичных отраслей.
Сейчас устойчивые сплавы ищут методами, которые сопряжены с риском упустить перспективный материал либо требуют запредельно долгих вычислений. Новый же метод, представленный в журнале npj Computational Materials, использует машинное обучение, чтобы ускорить перебор вариантов и сделать его более исчерпывающим. Исследование поддержано грантом РНФ.
Чистые металлы обычно уступают по своим свойствам сплавам из нескольких металлов и других элементов вроде углерода или кремния. Меняя состав и соотношение элементов в сплаве, можно регулировать его характеристики: прочность, ковкость, температуру плавления, устойчивость к коррозии, электрическое сопротивление и многие другие. Так материаловеды ищут сплавы с более совершенными свойствами для авиации, космических технологий, машиностроения и других областей: электротехники, строительства, медицинских инструментов и проч.
Однако новый сплав попадает в инструментарий инженера-проектировщика лишь тогда, когда его свойства измерены в ходе эксперимента. Проблема в том, что экспериментальный синтез и проверка материалов-кандидатов в лаборатории — это долгий и дорогостоящий процесс. Более того, даже моделирование сплавов на компьютере требует огромных затрат времени и ресурсов и потому не позволяет перебрать много вариантов.
«Потенциальных кандидатов очень много, потому что много переменных: какие химические элементы в составе сплава, в каких соотношениях, какая кристаллическая решетка и так далее, — рассказал один из авторов статьи, заведующий Лабораторией методов искусственного интеллекта для разработки материалов Центра ИИ Сколтеха Александр Шапеев. — Скажем, в простейшей системе двух элементов, ниобия и вольфрама, если рассмотреть набор из 20 атомов в ячейке кристаллической решетки, вам уже придется моделировать более миллиона различных комбинаций, 2 в степени 20, без учета симметрии».
Используемые для моделирования и отбора перспективных сплавов эволюционные алгоритмы, графовые нейросети, метод роя частиц и другие подходы хорошо работают при точечном поиске кандидатов, без перебора всех возможных комбинаций. Но в этом случае появляется риск упустить материал с выдающимися характеристиками.
«Эти подходы опираются на фундаментальное физическое описание процесса, прямые квантово-механические расчеты, — пояснила магистрант программы „Науки о данных“ Сколтеха и выпускница МФТИ Виктория Зинькович, первый автор научного исследования. — Это очень точные, но сложные и долгие расчеты. Мы же используем машинно-обучаемые потенциалы, которые, напротив, отличаются высокой скоростью вычислений и позволяют перебрать все возможные комбинации до некоторой границы отсечения, например до 20 атомов в суперъячейке. А значит, мы не пропустим хороших кандидатов».
Подход прошел валидацию на двух системах. Во-первых, тугоплавкие металлы: ванадий, молибден, ниобий, тантал, вольфрам. Во-вторых, медь и благородные металлы: золото, серебро, платина, палладий. В каждой системе рассмотрели по три сочетания атомов. Например, сразу все металлы из второго перечня; или медь, палладий и платина; или только медь и платина. Пять элементов в составе каждого перечня подобраны так, что для них характерна одна и та же кристаллическая решетка. Это упрощает расчеты, поскольку заранее известно, что и у сплава будет та же решетка.
Исследователи применили свой алгоритм поиска к каждому из шести рассмотренных сочетаний атомов — по три сочетания на благородные и на тугоплавкие металлы. Алгоритм ориентирован на оптимизацию физических величин, называемых энергией и энтальпией образования вещества, которые указывают на то, какие сплавы устойчивы, а какие подвержены распаду, то есть самопроизвольному переходу в иную, более стабильную конфигурацию.
О результативности алгоритма можно судить, сравнив результаты поиска с наполнением стандартной базы сплавов, которой пользуются материаловеды в отрасли. Авторы исследования обнаружили 268 новых сплавов, устойчивых при нулевой температуре, которых в базе не было. Так, в системе «ниобий — молибден — вольфрам» подход на основе машинно-обучаемых потенциалов выдал 12 кандидатов, при этом в базе не фигурирует ни одного трехкомпонентного сплава с таким составом.
Теперь свойства новых сплавов можно уточнять и проверять более прицельным моделированием и экспериментами, чтобы установить, какие из этих материалов перспективны для практических применений. «Использование компьютерного моделирования в науке о материалах уже послужило началом для открытия множества новых промышленно значимых сплавов, имеющих спектр применений от деталей кузовов автомобилей до баков для хранения водорода в ракетном топливе», — добавила Зинькович. Тем временем сами авторы нового алгоритма, по словам ученой, планируют применить свой подход к сплавам с другими составами и кристаллическими решетками.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
В Олдувайском ущелье на севере Танзании ученые обнаружили скелет слона возрастом 1,78 миллиона лет, а рядом с ним — необычные для того времени каменные орудия. Авторы нового исследования полагают, что им удалось найти древнейшее место разделки гигантской добычи.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
На юге Африки ученые обнаружили коллекцию небольших каменных стрел. С виду — обычные артефакты древнего человека. Но современные технологии позволили выявить их смертельный секрет. Эти наконечники, которым почти 60 тысяч лет, сохранили следы яда. Авторы нового исследования пришли к выводу, что древние охотники стали использовать яды намного раньше, чем считала наука.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
В Олдувайском ущелье на севере Танзании ученые обнаружили скелет слона возрастом 1,78 миллиона лет, а рядом с ним — необычные для того времени каменные орудия. Авторы нового исследования полагают, что им удалось найти древнейшее место разделки гигантской добычи.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
