Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ проанализировали изменения климата в Австралии
Ученые МТУСИ сравнили данные о температуре по нескольким метеорологическим станциям штата Квинсленд (Австралия) за период до 2018 года и провели контрольное прогнозирование по следующим пяти годам, а также предсказали изменения температур до 2030 года с использованием искусственного интеллекта. Полученные результаты станут основой для развития прогностических моделей, учитывающих как глобальные тренды, так и локальные особенности климатической динамики.
Климат на Земле постоянно меняется, что оказывает значительное влияние на жизнь людей и развитие общества. За последние 420 тысяч лет на планете произошло четыре периода похолодания, которые сменялись межледниковьями. Голоцен, начавшийся примерно 12 тысяч лет назад, характеризуется относительно комфортными условиями и включает в себя 13 циклов потепления и похолодания.
На сегодняшний день ученые, изучив керны льда из Гренландии и Антарктиды (озеро Восток), могут восстановить данные о климате планеты на несколько сотен тысячелетий назад. Примерно 5,5 тысяч лет назад начался голоценовый оптимум, после которого температура снизилась. С середины XIX века наблюдается тенденция к потеплению, вызванная увеличением уровня углекислого газа и антропогенным воздействием.
Изучение климата имеет огромное значение для оценки состояния окружающей среды и экономики, особенно сельского хозяйства. Современное потепление климата стало заметным всего за одно поколение и может повлиять на ресурсы и выживаемость людей. Анализ прошлых температур с использованием информационных технологий позволяет строить надежные климатические прогнозы.
В последние годы наблюдается значительный прогресс в обработке больших данных, что дает возможность использовать огромные объемы информации для более точных прогнозов и заполнять пробелы в наблюдениях. Концепция интернета вещей (IoT) объединяет устройства для сбора данных, открывая новые горизонты для научных исследований.
Виктория Ерофеева, доцент кафедры ЭБЖиЭ, Жанна Жукова, старший преподаватель кафедры ЭБЖиЭ и группа студентов факультета «Кибернетика и информационная безопасность» сравнили методы обработки доступных массивов данных о температуре по нескольким метеорологическим станциям штата Квинсленд (Австралия) за исторический период до 2018 года и провели контрольное прогнозирование по следующим пяти годам, а также итоговое предсказание изменения температур до 2030 года с использованием искусственного интеллекта.
Для анализа и предсказания климатических изменений в исследовании был выбран штат Квинсленд, Австралия, с множеством метеорологических станций и длинными температурными рядами. Использовались данные средних годовых температур по станциям, собранные в два файла: первый файл содержал данные с фактическими температурами для 236 станций за период наблюдений с 1856-2022 годы, а второй файл – данные пяти станций, находящихся в разных широтах за тот же период.
Для прогнозирования температуры из первого файла применялись такие методы, как k-nearest neighbors (KNN), Linear Regression (линейная регрессия) и seasonal autoregressive integrated moving average (SARIMA), без использования случайного разброса.
Для наглядной демонстрации работы из множества станций было выбрано девять с длинными рядами наблюдений. Более подробное сравнение изменчивости температуры из второго файла проведено с использованием метода «случайного леса» (Random Forest Regressor) для пяти станций. С его помощью можно сравнить максимальные и минимальные прогнозируемые температуры с реальными значениями. Методы оценивались на основе средней квадратичной ошибки (MSE).
«Точность прогноза для станций из второго файла была рассчитана для двух прогонов, поскольку при прогнозировании применялся случайный разброс с использованием метода случайного леса. Каждый прогон программы выдает новые значения, основанные на тех, которые доступны в файле №2. В итоге получены предсказания, учитывающие случайные величины, различные (но не значительно) для каждого прогона программы.
Точность была рассчитана путем сравнения прогнозируемых температур для двух прогонов с фактическими температурами из первого файла. В результате сравнения различных методов при прогнозировании random forest regressor показал, что этот метод прогнозирует значения температур с точностью не ниже 96 процентов, а самая маленькая среднеквадратичная ошибка высчитывается в методе k-nearest neighbors(KNN): 0,175. На основе random forest regressor мы провели прогнозирование по пяти станциям до 2030 года», — отметила Виктория Ерофеева.
В процессе исследования ученые отметили, что точность прогнозов зависит от размера исходного набора данных и количества гиперпараметров, таких как глубина деревьев в случайном лесу, скорость обучения при градиентном ускорении, коэффициент регуляризации в линейных моделях, количество соседей в методе k ближайших соседей и различные показатели, используемые для оценки модели.
«Сравнение температур на пяти станциях для первого файла методом регрессии случайного леса показало, что самые большие максимальные и минимальные температуры прогнозируются на станциях Вейпа и Аэропорт Локхарт, а самые маленькие — на станциях Амберли и Аплторп», — рассказала Жанна Сергеевна Жукова.
Важным аспектом исследования является использование машинного обучения и больших данных для прогнозирования будущих температурных режимов, обеспечивая более полное понимание сложных процессов, происходящих в атмосфере. Полученные результаты могут служить основой для развития прогностических моделей, учитывающих как глобальные тренды, так и локальные особенности климатической динамики.
Более детализированные данные о будущих температурных изменениях могут быть использованы для улучшения сельскохозяйственных практик, урбанистического планирования и экологического проектирования в условиях изменения климата.
Материал подготовлен на основе статьи «Сравнение методов прогнозирования температур по данным штата Квинсленд, Австралия».
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Кэтлин Рубинс выступила перед комитетом Национальных академий США и рассказала, что не так с новыми скафандрами для близкой высадки американцев на Луне. Учитывая ее 300-дневный опыт пребывания в космосе, критика выглядит довольно обоснованной. В прошлом году Рубинс ушла с поста руководителя отделения внекорабельной деятельности отдела астронавтов, где она участвовала в разработке новых лунных скафандров.
Американские эпидемиологи выяснили, как привычка выпивать влияет на кишечник в долгосрочной перспективе. Оказалось, постоянное тяжелое пьянство повышает вероятность развития рака прямой кишки почти в два раза. В то же время отказ от алкоголя, даже в зрелом возрасте, реально снижает риск появления предраковых полипов.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
В зоопарках звери доживают до старости и выбывают из программ глобального сохранения видов, потому что не могут размножаться. Это ставит под угрозу усилия по поддержанию популяций редких видов.
Вопреки множеству оценок из СМИ, самый крупный остров мира небогат полезными ископаемыми, но и никак не «бесполезный кусок льда». Открытия датских ученых последних лет показывают, что ценность этого куска суши намного выше, чем можно было подумать еще в 2010-х. Так зачем на самом деле он нужен Трампу и может ли его отъем разрушить НАТО, как на это надеются некоторые в России?
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
