• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
14.02.2022
ФизТех
1
9 564

Физики предложили новый элемент памяти, работающий при сверхнизких температурах

4.7

Группа исследователей из МФТИ и Стокгольмского университета разработала миниатюрное устройство, способное контролируемо изменять фазу сверхпроводящей волновой функции. Поскольку сверхпроводниковая электроника имеет дело именно с такой функцией, это устройство может стать одним из ее базовых элементов — как транзистор для полупроводниковой техники. Переключением фазы ученые управляли, передвигая вихри Абрикосова между специально созданными «ловушками» вблизи джозефсоновского контакта. Эти переключения могут быть использованы для реализации памяти, работающей при очень низких температурах.

Строение устройства. Джозефсоновский фазовый сдвиг создается сверхпроводящими вихрями. Вихревые ловушки микронного размера / ©Nano Letters

Результаты исследования опубликованы в журнале Nano Letters. Узким местом сверхбыстрых логических устройств на основе сверхпроводящих материалов считается реализация низкотемпературной памяти. Поскольку привычные полупроводниковые запоминающие устройства при сверхнизких температурах работать не могут — остро стоит вопрос об их эквиваленте способном так же эффективно работать при температурах жидкого гелия (4,2 К = –268,8 С) и ниже.

Хорошо известно, что традиционная электроника выстраивает свою работу, оперируя напряжением или током, сверхпроводящая же работает с фазой сверхпроводящей волновой функции, поскольку в сверхпроводнике при протекании тока ниже его критического значения напряжение всегда равно нулю. Например, в обычной электронике автономным питающим устройством является батарейка — источник электронов, в сверхпроводящей электронике аналогом является фазовая батарейка — устройство, способное также автономно создавать разность фаз на определенном участке сверхпроводящей цепи для того, чтобы начал течь сверхток.

Конструкция, разработанная учеными из МФТИ и Стокгольмского университета, позволяет задавать, менять и сохранять в течение длительного времени значение разности фаз в джозефсоновских контактах — базовых элементах сверхпроводящей и квантовой электроники. «Сверхпроводимость сама по себе — интересный квантово-механический эффект в том смысле, что электроны в сверхпроводнике ведут себя как единое целое — лежат на одном энергетическом уровне и описываются одной волновой функцией.

При этом, в отличие от атомов и фотонов, проявляя квантовые свойства, сверхпроводник имеет макроскопические (десятки микрон) размеры, — поясняет Владимир Краснов, ведущий научный сотрудник лаборатории терагерцовой спектроскопии МФТИ, соавтор статьи. — Когда атомы ведут себя квантово-механически, это не вызывает удивления, а для таких огромных объектов это крайне неожиданно».

В 1962 году Брайан Дэвид Джозефсон, позднее ставший лауреатом Нобелевской премии, показал, что, если создать своеобразный «конденсатор» из двух сверхпроводников, разделенных тонким изолятором, между его обкладками будет течь сверхпроводящий ток. Такие конструкции получили название джозефсоновских контактов. Между волновыми функциями электронов с обеих сторон барьера в результате туннельного обмена устанавливается разность фаз, которая и определяет величину тока. Способность управляемо изменять разность фаз дает возможность «настройки» состояния сверхпроводящих устройств.

Чтобы управлять разностью фаз, ученые «поселили» в сверхпроводнике вихри Абрикосова. Сверхпроводник не пускает в себя магнитное поле, но при определенных условиях оно может проникать туда отдельными квантами, не нарушая сверхпроводимость в целом. Вокруг «дыры» — места проникновения — начинает циркулировать сверхпроводящий ток, схожим образом вокруг области с пониженным атмосферным давлением закручивается воронка урагана. Исследователи показали, что, передвигая вихрь, можно изменять разность фаз на расположенном неподалеку джозефсоновском контакте.

«В 2015 году на основе вихрей Абрикосова мы создали прототип памяти для квантового компьютера, — вспоминает Владимир Краснов. — Это было гораздо проще: мы доказали, что можем включать или выключать вихрь, получая 1 или 0, для памяти этого достаточно. Наше новое устройство может с помощью небольших манипуляций импульсом тока менять разность фаз. Точность сдвига контролируется с помощью системы специально созданных дефектов — просверленных на поверхности кристалла дырочек-ловушек.

“Пинок” импульсом тока заставляет вихрь “вылететь” из одной ловушки и попасть в следующую. Примерно так же на неровной поверхности мячик скатывается в ямку, поскольку это выгодно энергетически. Сдвигая вихрь на расстояние порядка его размера, мы вызываем существенное изменение фазы. Системы из четырех ловушек нам хватило, чтобы, переключаясь между ними, изменять разность фаз практически непрерывно в диапазоне от нуля до 3π, чего более чем достаточно для практического применения».

Однако импульсные эксперименты не давали уверенности, что вихрь попадает именно в искусственно изготовленную ловушку, так как он, находясь в системе, может задержаться и на других дефектах, и при этом все так же влиять на фазу волновой функции. Доказательство захвата вихря ловушкой стало возможным благодаря локальным зондовым методам исследования.

Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ, соавтор статьи, добавляет: «Используя низкотемпературную магнитно-силовую сканирующую микроскопию, нам удалось визуализировать сам факт попадания вихря Абрикосова в специальную “ловушку” и одновременно с этим продемонстрировать его влияние на свойства контакта.

В дальнейшем это позволило интерпретировать результаты импульсных электронно-транспортных экспериментов на новом качественном уровне. Таким образом, локальные методы исследований в очередной раз продемонстрировали свою эффективность для однозначного определения свойств и функциональных особенностей наноразмерных систем».

Важные достоинства разработанного устройства — миниатюрность (порядка сотен нанометров) и автономность. Сверхпроводящие квантовые устройства крайне восприимчивы к помехам, и то, что менять фазу можно, не подсоединяя провода, — потенциальные источники паразитных сигналов — очень ценно. Новый прибор имеет все шансы стать базовым элементом для создания более сложных устройств в сверхпроводниковой электронике.

Центр перспективных методов мезофизики и нанотехнологий МФТИ создан в 2021 году и работает под научным руководством нобелевского лауреата сэра Андрея Гейма. В основе исследований Центра лежат современные зондовые и спектроскопические методы. Исследования направлены на получение новых фундаментальных знаний, а также на разработку новых принципов работы квантовых, электронных, спиновых, ионных, молекулярных и др. устройств. Решается проблема пределов миниатюризации функциональных устройств.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
25 февраля
Руслан Руслан

Компания Neuralink, при помощи которой предприниматель Илон Маск надеется совершить революцию в интерфейсах «мозг-компьютер» (BCI), впервые имплантировала человеку устройство «чтения мыслей». Об этом Маск сообщил в твите, опубликованном 29 января. Однако, некоторые обеспокоены отсутствием прозрачности вокруг имплантата, который должен дать возможность управлять устройствами посредством мысли. Реакции ученых и экспертов на это событие обобщает медиа-редакция Nature, а Naked Science приводит перевод этой статьи.

Вчера, 13:46
ПНИПУ

Согласно планам России по развитию авиастроения, к 2030 году будет произведено свыше тысячи отечественных самолетов. Перед промышленными предприятиями сейчас стоит масштабная задача — ускорить цикл проектирования, производства и сервиса авиационных двигателей. Во время их сборки могут возникать дефекты, которые тормозят процесс и снижают показатели эффективности. Один из наиболее распространенных дефектов — дисбаланс ротора, основной части турбины двигателя. Он приводит к повышению нагрузки, меняет режим работы и ускоряет разрушение двигателя. Ученые ПНИПУ предложили минимизировать начальный дисбаланс ротора с помощью выбранного метода сборки, а остаточный дисбаланс — балансировкой.

Вчера, 15:20
Полина

Дети, которые родились в одноязычных и многоязычных семьях, по-разному воспринимают речь. Это подтвердила спектроскопия.

Позавчера, 19:10
Дарья Губина

В 2022 году зонд DART столкнулся с Диморфом, спутником астероида Дидим. Ученые хотели проверить, можно ли сбить с траектории небольшое, но потенциально опасное для нашей жизни космическое тело. Оказалось, DART не только изменил орбиту маленького объекта, но и полностью его «переворошил».

Позавчера, 15:00
Юлия Трепалина

Немецкие ученые рассказали о преимуществах новой технологии промышленного производства яблочного сока — с помощью метода спирального пресса с фильтрацией (spiral filter press). Исследователи установили, что он позволяет в четыре раза увеличить содержание в соке полезных для здоровья веществ по сравнению с более традиционным способом отжима.

25 февраля
Руслан Руслан

Компания Neuralink, при помощи которой предприниматель Илон Маск надеется совершить революцию в интерфейсах «мозг-компьютер» (BCI), впервые имплантировала человеку устройство «чтения мыслей». Об этом Маск сообщил в твите, опубликованном 29 января. Однако, некоторые обеспокоены отсутствием прозрачности вокруг имплантата, который должен дать возможность управлять устройствами посредством мысли. Реакции ученых и экспертов на это событие обобщает медиа-редакция Nature, а Naked Science приводит перевод этой статьи.

20 февраля
Полина

В Российской академии наук завершили первый Большой словарь ударений, его издадут к концу года. Лингвисты собрали наиболее современные нормы произношения привычных слов и зафиксировали ударение для лексики, которая появилась в русском языке недавно.

1 февраля
Андрей

Канадские исследователи изучили состав пород, вышедших на поверхность при появлении первых континентов. По итогам анализа выяснилось, что новая земная кора возникла не в результате движения тектонических плит, а из-за процессов в океанических плато молодой Земли.

22 февраля
РНФ

Ученые показали, что экстремальный подъем уровня Каспийского моря на десятки метров, произошедший 18-13 тысяч лет назад и получивший название «Великая Хвалынская трансгрессия», мог быть вызван, вопреки существующим гипотезам, не таянием ледника, а естественными изменениями палеоклимата. Оказалось, что из-за холодного климата того периода обширные территории, с которых собирали воду впадающие в Каспий реки, были покрыты многолетней мерзлотой. В результате массы дождевых и талых вод почти не впитывались в мерзлые грунты и стекали в море, испарение с поверхности которого было небольшим. Все эти факторы привели к повышению уровня Каспия и увеличению площади моря более чем вдвое по сравнению с современным. Полученные данные помогут уточнить представления о масштабе колебаний уровня Каспийского моря при изменении климата.

[miniorange_social_login]

Комментарии

1 Комментарий

Ничего не понятно,но молодцы наверняка полезное что то придумали ))))
Подтвердить?
Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: