• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
30.01.2024, 11:54
Сколтех
221

Физики показали новый способ предсказания свойств магнитных сплавов с помощью машинного обучения

❋ 4.4

Ученые из Сколтеха и МФТИ с коллегами из Германии, Австрии и Норвегии предложили и верифицировали новый способ компьютерного моделирования магнитных сплавов с помощью машинно-обучаемых потенциалов. В методе в качестве переменных учитываются магнитные моменты атомов (магнитные степени свободы), благодаря чему он успешно предсказал энергию, механические и магнитные характеристики сплава железа и алюминия. Ученые планируют добавить в метод активное обучение и протестировать его на другом материале — нитриде хрома.

В виде шариков изображены атомы, стрелки — магнитные моменты атомов, а изогнутая поверхность показывает, что атомы расположены в наиболее энергетически выгодных положениях, и их спины тоже ориентированы наиболее энергетически выгодным образом / Павел Одинев / Пресс-служба Сколтеха
В виде шариков изображены атомы, стрелки — магнитные моменты атомов, а изогнутая поверхность показывает, что атомы расположены в наиболее энергетически выгодных положениях, и их спины тоже ориентированы наиболее энергетически выгодным образом / Павел Одинев / Пресс-служба Сколтеха / Автор: Plinia Abito

Работа опубликована в Scientific Reports. При компьютерном моделировании материалов нередко приходится искать баланс между скоростью и точностью расчетов. Наименьшие ошибки в предсказаниях свойств и структуры веществ дают квантово-механические методы, в которых рассчитывается электронная структура вещества. Наиболее популярный из них — теория функционала плотности (DFT), в котором вместо волновой функции для каждого электрона, используется обобщенная электронная плотность, что уменьшает количество переменных, упрощает описание и ускоряет вычисления.

Однако даже на суперкомпьютерах такими подходами можно моделировать системы размерами всего лишь в десятки и сотни атомов. Для расчетов более крупных систем применяют более упрощенные подходы через потенциалы взаимодействия, которые описывают силы между атомами и не учитывают электронную структуру. Из-за этого падает точность предсказаний свойств материала.

В последние годы было найдено промежуточное решение, когда можно сохранить «квантово-механическую точность» и на несколько порядков повысить скорость вычислений даже для систем из тысяч атомов. Одним из популярных методов стало машинное обучение, с помощью которого исследователи создают потенциалы взаимодействия, но обученные на результатах квантово-механических расчетов. Эти потенциалы лучше предсказывают параметры материалов, чем эмпирические аналоги.

Однако даже машинно-обученные потенциалы не всегда учитывают магнитные степени свободы атомов, что может приводить к ошибкам, например, при моделировании материалов с выраженным ферро-, антиферро- или парамагнетизмом.

Чтобы корректно предсказывать свойства подобных веществ, научная группа физиков и математиков из МФТИ и Сколтеха, обобщила свой метод построения машинно-обучаемых потенциалов MTP (Moment Tensor Potentials) до версии mMTP (magnetic MTP), в которой учтены магнитные степени свободы атомов. Ученые уже применяли новую версию, в том числе для предсказания энергии железа в парамагнитном и ферромагнитном состоянии. В новой работе они протестировали метод для двухкомпонентного сплава железо-алюминий.

Иван Новиков, старший научный сотрудник Сколковского института науки и технологий и доцент кафедры химической физики функциональных материалов МФТИ, комментирует: «Наш коллектив занимается разработкой машинно-обучаемых потенциалов, которые ускоряют приблизительно на пять порядков квантово-механические расчеты, нужные для описания свойств материалов.

В последние три года пошла разработка машинно-обучаемых потенциалов с магнитными степенями свободы, и мы тоже уже создали подобный потенциал — магнитный MTP и валидировали его для системы железа. В этой работе мы хотели провалидировать потенциал уже на двухкомпонентной системе и продемонстрировать алгоритм построения базы данных для обучения потенциала».

Исследователи собрали базу данных на основе результатов квантово-механических расчетов и по ней обучили пять mMTP-потенциалов. А затем проверили, как потенциалы предсказывают структуру и магнитные свойства сплава в зависимости от концентрации алюминия.

На первом и самом долгом этапе работы ученые собирали базу данных для обучения модели. Для квантово-механических расчетов выбрали системы из 16 атомов. Системы отличались по количеству и взаимному расположению («раскраске») атомов железа и алюминия. Полученные конфигурации приводили в состояние равновесия — релаксировали с помощью теории функционала плотности, то есть подбирались положения атомов, размеры кристаллической решетки и магнитные моменты, при которых конкретная структура имела минимальную энергию. На следующем шаге конфигурации возмущали: меняли размеры решетки и сдвигали атомы.

На финальном, третьем этапе возмущали уже магнитные моменты как для структур с первого шага, так и для второго, для этого использовали теорию функционала плотности, в которой есть ограничения типа равенств на магнитные моменты электронов — constrained DFT. После всех трех шагов была получена база из более 2 000 конфигураций с возмущениями и без.

Второй этап работы — обучение и верификация потенциалов mMTP — был самым сложным. На полученной выборке конфигураций исследователи обучали ансамбль из пяти потенциалов MTP. Затем исследователи сравнивали его предсказания равновесных параметров конфигураций (позиций атомов, магнитных моментов, размеров решетки) с квантово-механическими расчетами. Новый метод показал высокую точность и согласие с квантово-механическим моделированием для всех концентраций алюминия.

Результаты MTP также качественно совпали с экспериментом, когда ученые рассмотрели зависимость размеров решетки от содержания алюминия в сплаве. В пределах концентрации от 20 до 40 процента алюминия параметры решетки не менялись. Количественная разница связана в том числе с тем, что моделирование в отличие от опытов проводилось при абсолютном нуле температур.

В последней части работы ученые сравнили магнитные моменты сплавов, полученные квантово-механическим методом и с помощью mMTP. Результаты согласовались друг с другом и с теорией: если концентрация алюминия росла, сплав терял магнитные свойства. mMTP предсказал полную потерю ферромагнитизма при 50-процентном содержании алюминия в отличие от квантово-механических расчетов. Данное расхождение нуждается в дополнительном исследовании.

Далее ученые планируют добавить активное обучение в свой метод, чтобы отбор конфигураций системы, подходящих для обучения потенциала, происходил автоматически. Это позволит исследовать материалы при ненулевых температурах, а также парамагнитные системы.

Иван Новиков делится планами: «Я считаю, что, соединив наши знания и результаты статьи 2022 года про железо и эту статью про железо-алюминий, мы добавим и применим активное обучение и верифицируем mMTP для другого материала — нитрида хрома. В частности, сможем предсказать изменение удельной теплоемкости, рассмотреть парамагнитные состояния. Я сторонник подхода, что надо сначала провалидировать подробно методологию, которую разработали, а потом переходить в более практическую плоскость. Собственно говоря, наша научная работа по такому пути и развивалась: сначала валидировали MTP на прототипных системах, а сейчас мы уже подошли к предсказанию фазовых диаграмм сложных веществ».

Исследование поддержано грантом Российского научного фонда.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
29 января, 19:38
Александр Березин

Некоторые исследователи предполагали, что по мере исчезновения морского льда белые медведи потеряют кормовую базу и начнут умирать от истощения. Однако их популяция, живущая в районе максимального исчезновения морского льда, напротив, существенно прибавила в весе.

30 января, 12:06
Илья Гриднев

Исследователи доказали реальность двумерных дискретных кристаллов времени, которые ранее существовали лишь в теории. Для эксперимента использовали мощный квантовый процессор, позволивший материи поддерживать ритм колебаний без потери энергии.

30 января, 15:08
МГППУ

Кибербуллинг — преднамеренное и повторяющееся агрессивное поведение в цифровой среде, направленное против одного человека или группы. Он может включать оскорбления, угрозы, распространение ложной информации или исключение из группы в социальной сети. В отличие от традиционных конфликтов, онлайн-травля усиливается анонимностью, широким охватом аудитории и постоянным доступом к сообщениям, а это затрудняет защиту жертвы. Исследование, проведенное среди студентов Московского государственного психолого-педагогического университета подтверждает высокую распространенность явления: около 30% опрошенных сталкивались с ним за последний год. Это особенно актуально для молодежи, проводящей много времени в интернете. Психологи МГППУ отобрали посты в соцсетях с агрессивным содержанием и провели анализ.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

25 января, 16:53
Evgenia Vavilova

В зоопарках звери доживают до старости и выбывают из программ глобального сохранения видов, потому что не могут размножаться. Это ставит под угрозу усилия по поддержанию популяций редких видов.

27 января, 13:01
Александр Березин

Кэтлин Рубинс выступила перед комитетом Национальных академий США и рассказала, что не так с новыми скафандрами для близкой высадки американцев на Луне. Учитывая ее 300-дневный опыт пребывания в космосе, критика выглядит довольно обоснованной. В прошлом году Рубинс ушла с поста руководителя отделения внекорабельной деятельности отдела астронавтов, где она участвовала в разработке новых лунных скафандров.

12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

26 января, 14:26
Александр Березин

Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.

20 января, 13:40
Александр Березин

Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно