Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Алгоритм научили предсказывать успешность в задаче на внимание
Ученые из НИУ ВШЭ и Сколтеха разработали модель машинного обучения, которая может предсказывать успешность человека в задаче на внимание по времени реакции и движениям глаз.
Статья исследователей опубликована в Decision Support Systems. Исследование проведено при поддержке Российского научного фонда. Ментальное внимание отражает нашу способность с усилием сосредоточиться на задаче. Это ограниченный умственный ресурс, который мы постепенно истощаем во время сознательной деятельности. Успешность решения сложных умственных задач зависит как от общих когнитивных способностей, так и от доступного ресурса внимания человека при выполнении этих задач.
Особенно внимание важно для класса задач, связанных с удержанием в уме зрительной информации, например в работе диспетчера в аэропорту или водителя на дороге. Ментальное внимание также необходимо для обучения, когда человеку нужно вовлечь все свое внимание и сосредоточиться на мыслительной задаче. Поэтому важно научиться измерять, как ресурс внимания в зрительных задачах влияет на успешность их выполнения.
Измерение ментального внимания широко изучалось в психологии развития и в образовании. Известно, что показатели ментального внимания сильно коррелируют с общим интеллектом и успеваемостью. Авторы статьи решили впервые применить алгоритмы машинного обучения, чтобы понять, по каким измеряемым данным можно предсказать точность выполнения задачи на внимание. Для предсказания ученые собирали данные о времени реакции и движении глаз.
В эксперименте испытуемые выполняли задачу на соответствие цветов (Colour Matching Task) в двух вариантах: с воздушными шариками и с клоунами. В каждом из них перед игроком на короткое время появляются изображения с различными цветами. От испытуемого требуется сравнить картинку с предыдущей и ответить, совпадают ли цвета.
Это задание имитирует задачи, которые стоят перед врачами-рентгенологами, водителями, диспетчерами в аэропортах и другими специалистами, которым важно удерживать в уме зрительную информацию и быстро учитывать изменения.
У обеих задач есть шесть уровней сложности — в зависимости от количества цветов, которые нужно обработать. Вариант с клоунами всегда немного сложнее варианта с шариками, так как в изображении клоуна больше разных деталей. Движения глаз испытуемых записывались с помощью специального устройства — айтрекера. Всего были проанализированы данные 57 здоровых взрослых людей, средний возраст которых составлял 23 года.
Затем данные анализировали с использованием моделей машинного обучения. Такие модели позволяют понять, какие данные лучше всего предсказывают успешность выполнения задачи. В эксперименте мерой успешности была точность — процент правильных ответов для каждого испытуемого на каждом уровне сложности.
Модель «регрессор XGBoost» показала лучший результат. Она с точностью 82,8 процента предсказывала, даст ли участник правильный ответ. Самым эффективным параметром для предсказания успешности участника оказалась скорость ответа. Чем больше она варьировалась, тем меньше правильных ответов давал испытуемый. Это может быть связано с тем, что некоторые испытуемые давали быстрый случайный ответ, если уровень сложности превышал их ресурсы внимания.
Также на результат повлияли, хоть и в меньшей степени, движения глаз. По таким параметрам, как среднее количество фиксаций на каждой картинке и их длительность, число саккад, частота морганий и размер зрачка, можно было частично предсказать успешность испытуемого. Движения глаз могут отражать то усилие, которое испытуемый прилагает для удержания информации в поле внимания.
«Разработанный подход может использоваться как для дальнейшего изучения параметров, которые предсказывают успешность в решении задач, связанных с ресурсами ментального внимания, так и в прикладных целях — для непосредственного предсказания в реальном времени когнитивных способностей специалистов, объем которых может изменяться под влиянием таких факторов, как физическое состояние и усталость», — считает один из авторов статьи, стажер-исследователь Научно-учебной лаборатории нейробиологических основ когнитивного развития Валентина Бачурина.
2020-е годы показали, что любая система международной торговли может быть разрушена в кратчайшие сроки. Ученые решили выяснить, какие государства в таких условиях смогут прокормить свое население, а какие — не совсем. Лидером, что неожиданно, оказалось очень небольшое государство с населением менее миллиона человек.
На планете более 60 миллионов человек с приобретенным слабоумием, однако причины этого заболевания неясны. Судя по новому исследованию, дело вряд ли в наследственности: картина с распределением деменции больше похожа на характерную для инфекционных заболеваний.
Инженер Эррол Маск заявил, что одновременно с вопросом о межпланетном перелете автоматически возникает вопрос о возвращении астронавтов на Землю.
2020-е годы показали, что любая система международной торговли может быть разрушена в кратчайшие сроки. Ученые решили выяснить, какие государства в таких условиях смогут прокормить свое население, а какие — не совсем. Лидером, что неожиданно, оказалось очень небольшое государство с населением менее миллиона человек.
Инженер Эррол Маск заявил, что одновременно с вопросом о межпланетном перелете автоматически возникает вопрос о возвращении астронавтов на Землю.
Новое исследование с участием нескольких тысяч немецких подростков показало, что курение обычных или электронных сигарет, особенно сочетание этих практик, в сотни раз повышает вероятность знакомства тинейджеров с марихуаной.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии