Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Томские физики создали сплав, который выдерживает 100 тысяч циклов деформации
Ученые ТГУ добились уникального состояния сплава с памятью формы, усовершенствовав многокомпонентные сплавы Гейслера путем добавления железа и кобальта. Благодаря оптимизации химического состава и термической обработке, новый материал демонстрирует высокие обратимые деформации в интервале от 100 до 300 градусов и выдерживает до 100 тысяч рабочих циклов без разрушения, что открывает перспективы для его применения в высокотемпературных механических устройствах аэрокосмической, автомобильной и энергетической отраслей.
Ученые Сибирского физико-технического института Томского государственного университета (СФТИ ТГУ) работают над созданием функциональных материалов на основе многокомпонентных сплавов Гейслера. Это соединения нескольких металлов (интерметаллиды), которые при высоких температурах демонстрируют память формы и сверхэластичность. В автомобильной, аэрокосмической, производственной и энергетической промышленности сплавы Гейслера – «конкуренты» популярного в использовании никелида титана (TiNi).
Преимущества сплавов Гейслера в том, что у них выше, чем у TiNi, циклическая стабильность и степень возврата заданной деформации при высоких температурах — от 100 градусов Цельсия. Лаборатория физики высокопрочных кристаллов СФТИ ТГУ усовершенствовала сплавы Гейслера за счет добавления четвертого элемента — железа либо кобальта. Подобранная концентрация элементов повысила прочностные характеристики и рабочие температуры новых материалов.
Сплавы с памятью формы (СПФ) с высокими температурами мартенситного превращения могут упростить и повысить эффективность работы многих механических устройств, предназначенных для работы при температурах выше 100 градусов Цельсия. Они могут заменить собой часть конструкции, являясь одновременно считывающим и исполнительным устройством. Насыщение конструкции дополнительными механизмами приводит к нежелательному увеличению ее веса и объема, увеличению риска возникновения неисправностей, а также к повышению энергозатрат. Поэтому с развитием наук о новых материалах и металловедения в качестве решения стали использоваться «умные» материалы, способные давать отклик на изменение условий окружающей среды.
Основные успехи в этой области получены на сплавах на основе TiNi. Однако у никелида титана есть ряд минусов. Это слабая циклическая стабильность, невысокая степень возврата заданной деформации, низкие температуры и пр. В связи с этим постоянно разрабатывается ряд новых высокотемпературных сплавов с памятью формы.
Одним из наиболее значительных конкурентов TiNi являются сплавы Гейслера с памятью формы. Это химические соединения двух или нескольких металлов (интерметаллиды) с химической формулой X2YZ, где X и Y – элементы переходной группы, а Z – элементы основной группы.
Среди сплавов Гейслера наиболее популярными, изученными и перспективными являются сплавы Ni2MnGa и Ni/span>2FeGa. В СФТИ ТГУ их разработкой занимается коллектив лаборатории физики высокопрочных кристаллов (заведующий лаборатории – профессор Юрий Чумляков) под руководством старшего научного сотрудника, кандидата физико-математических наук Екатерины Тимофеевой. Работы ведутся в рамках проекта, поддержанного Российским научным фондом.
Лаборатория физики высокопрочных кристаллов СФТИ ТГУ – одна из немногих в мире, где занимаются ростом и исследованием монокристаллов. Сплавы Гейслера практически невозможно исследовать в поликристаллическом состоянии ввиду высокой хрупкости. Поэтому получение больших и высококачественных монокристаллов дает ученым существенное преимущество и открывает новые возможности по контролю микроструктуры и свойств.
В ходе работы над проектом лаборатория физики высокопрочных кристаллов СФТИ усовершенствовала сплавы Гейслера за счет добавления четвертого элемента (Ni2MnGa-Fe и Ni/span>2FeGa-Со). Кроме легирования железом и кобальтом, в сплавах также изменили концентрацию выбранных элементов. Параметры внутренней микроструктуры сплавов исследователи контролируют посредством термических обработок – это еще один эффективный способ улучшения свойств.
Отличительной чертой проекта сотрудников СФТИ ТГУ является создание уникальной возможности за счет изменения химического состава – в монокристаллах Ni/span>2FeGa-Со были обнаружены частицы омега-фазы. Появление/исчезновение этой кристаллической фазы контролируется за счет термической обработки. При этом омега-фаза характерна для сплавов на основе Ti, Nb, Zr, а в сплавах Гейслера ее частицы ранее практически не наблюдались. В некоторых случаях выделение омега-фазы может быть полезным, в то время как в других ее образование значительно ухудшает свойства сплава.
В монокристаллах Ni/span>2FeGa-Со омега-фаза играет ключевую роль в определении прочностных характеристик и рабочих температур.
– Нам удалось получить уникальные состояния сплава, в которых омега-фаза способствует значительному улучшению его характеристик. Такие результаты были достигнуты за счет вариации концентрации элементов, т.е. изменения химического состава, а также за счет термических обработок. Например, получены высокие рабочие температуры – большие обратимые деформации сплава наблюдаются в широком интервале температур от 100 до 300 градусов Цельсия. Кроме того, сплавы способны испытывать 100 тысяч рабочих циклов «нагрузка/разгрузка» без существенной деградации и разрушения, – рассказывает руководитель проекта Екатерина Тимофеева.
Данная разработка представлена на одной из крупнейших профильных конференций – VI международной конференции «Сплавы с памятью формы» (Москва).
Результаты исследований в рамках проекта «Разработка функциональных материалов с высокотемпературными эффектами памяти формы и сверхэластичности на основе многокомпонентных сплавов Гейслера» опубликованы, в том числе, в высокорейтинговых журналах (квартиль Q1) – Metals издательства MDPI и Materials Letters издательского дома Elsevier. Оба издания входят в базу данных Scopus.
Самцов пауков из рода черных вдов голодные самки после спаривания часто съедают. Поэтому, чтобы привлечь их, нужны серьезные ухищрения. Ученые выявили важнейший феромон, используемый для этих целей, и выяснили, что выделяют его самки с изменяющейся силой.
В экспериментальных рейсах на электромобиле в темное время суток ученые сравнили действие на пассажиров теплого красного и холодного синего освещения, а также эффект от езды с выключенной подсветкой салона.
Подавляющее большинство людей с возрастом приобретают боль и хруст в коленях, а затем и снижение их подвижности. В тяжелых случаях дело доходит до протезирования сустава. Но замена по функциональности уступает естественному, да и сами операции на пожилых людях не всегда разумны. Корейские ученые предложили новый подход к решению проблемы.
Археологи Института истории материальной культуры РАН (ИИМК РАН), при поддержке фонда «История отечества» в ходе раскопок обнаружили на всемирно известной стоянке каменного века Костенки-17 в Воронежской области редчайшие украшения из зубов песца и окаменелой раковины, а также уникальный для этого времени нуклеус из бивня мамонта для снятия заготовок.
Обычно выбрасываемое кометой вещество придает ей заметное ускорение. Как выяснилось, с третьим известным науке межзвездным объектом 3I/ATLAS этого практически не происходит, хотя у него есть и кома, и хвост. Астрофизики сейчас пытаются найти этому объяснение.
Если гипотетическая внеземная цивилизация живет возле очень старой и потому очень горячей звезды, она могла бы спасти свою планету от перегрева с помощью защитной астроинженерной конструкции. Астрофизики рассказали, как ее можно будет обнаружить с помощью новой обсерватории.
Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии