Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Сельское хозяйство будущего: нейронные сети научились предсказывать динамику роста растений
Ученые из Сколтеха обучили нейронные сети оценивать и предсказывать динамику роста растений с учетом основных действующих на растение факторов и предлагать оптимальное соотношение необходимых питательных веществ и других параметров, определяющих его рост.
Результаты исследования опубликованы в журнале IEEE Transactions on Instrumentations and Measurements. Искусственный интеллект за последние несколько лет попробовали применить почти во всех сферах нашей жизни, и часто он оказывается полезным, помогая человеку принимать правильные решения для реализации поставленных задач. Применение интеллектуальных систем в области выращивания растений в искусственных условиях — не исключение.
Среди множества различных типов схем нейросетей особое место занимают так называемые рекуррентные нейронные сети. Их архитектура позволяет эффективно обрабатывать данные, представляющие собой направленную последовательность: например, текст, речь и временны́е ряды. Именно временны́ми рядами хорошо описывается динамика роста растения во времени.
В своей исследовательской работе ученые из Сколтеха показали, как рекуррентные нейронные сети совместно с алгоритмами компьютерного зрения могут полностью взять на себя задачу предсказания динамики роста растений в зависимости от текущего состояния системы выращивания и параметров, ее характеризующих. Задача была решена с использованием данных, полученных совместном с Германским аэрокосмическим центром (DLR).
Ученые из Германии работали над задачей дополнительной стимуляции роста растений в искусственных системах, схожих с теми, что применяются на Международной космической станции. В совместном эксперименте были получены ценные данные, позволяющие найти оптимальное соотношение питательных веществ, необходимых растению для наилучшего роста при имеющихся ограничениях.
В работе были использованы алгоритмы компьютерного зрения для сегментации и определения площади поверхности листвы, а для предсказания роста растений — различные схемы рекуррентных нейронных сетей, показавшие свою эффективность при решении задачи. Для демонстрации и апробации разработанной программы в реальных условиях была предложена встраиваемая энергоэффективная система, позволяющая производить вычисления и предсказание динамики роста.
Система разработана на базе популярного одноплатного компьютера для прототипирования Raspberry Pi с внешней графической платой Intel Movidius. В основе устройства — компактный и мощный графический процессор Myriad 2, который при мощности всего в 1 Вт способен выдавать вычислительную производительность в 150 гигафлопс, что сравнимо с производительностью суперкомпьютеров середины 1990-х. Графические чипы такого рода отлично подходят для запуска нейронных сетей и в будущем станут основой встраиваемых систем с искусственным интеллектом.
«Данное исследование позволит создавать портативные системы для постоянного мониторинга, анализа состояния растений в искусственных системах выращивания и предсказания динамики их роста, что в конечном счете окажет неоценимую помощь человеку», — рассказывают одни из авторов исследования Дмитрий Шадрин и Александр Меньщиков.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Профессор Московского городского педагогического университета, доктор психологических наук Борис Рыжов описал феномен любви как сложную систему взаимосвязанных мотиваций, которые фиксируются на одном объекте, создавая прочную эмоциональную связь. Это объяснение помогает понять, почему любовь способна настолько глубоко влиять на все аспекты жизни человека и как происходит формирование устойчивой привязанности.
Среди тысяч окаменелостей из раннеюрского озера нашли самый полный скелет древней двоякодышащей рыбы
Китайские палеонтологи раскопали богатый окаменелостями комплекс, раскрывающий разнообразную пищевую цепь пресноводного озера времен раннего юрского периода. Тысячи находок рыб, среди которых и новые виды, древних родственников акул и даже плезиозавров показали пеструю фауну, сохранившуюся после вымирания почти 200 миллионов лет назад.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Среди тысяч окаменелостей из раннеюрского озера нашли самый полный скелет древней двоякодышащей рыбы
Китайские палеонтологи раскопали богатый окаменелостями комплекс, раскрывающий разнообразную пищевую цепь пресноводного озера времен раннего юрского периода. Тысячи находок рыб, среди которых и новые виды, древних родственников акул и даже плезиозавров показали пеструю фауну, сохранившуюся после вымирания почти 200 миллионов лет назад.
Профессор Московского городского педагогического университета, доктор психологических наук Борис Рыжов описал феномен любви как сложную систему взаимосвязанных мотиваций, которые фиксируются на одном объекте, создавая прочную эмоциональную связь. Это объяснение помогает понять, почему любовь способна настолько глубоко влиять на все аспекты жизни человека и как происходит формирование устойчивой привязанности.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии