Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Групповую скорость света превысили в 30 раз относительно скорости света в вакууме
Ученые из Флориды разработали технику, при которой групповая скорость светового импульса в 30 раз превышает скорость света, а также может двигаться в обратную сторону. При этом техника не подразумевает использования дополнительных материалов.
Исследователи из Университета Центральной Флориды разработали способ контроля за скоростью света. Они утверждают, что могут не только ускорить и замедлить световой импульс, но и заставить его двигаться в обратную сторону. Результаты исследований были опубликованы в журнале Nature Communicationsв конце февраля, но привлекла внимание СМИ только сейчас.
Эта работа представляет собой важный шаг в исследованиях, которые однажды могут привести к разработке более эффективной оптической коммуникации, а также к технике, которую можно применить в облегчении скопления данных и предотвращении потери информации. При возрастающем количестве устройств, подключающихся к информационным сетям, и повышенных скоростях такой тип контроля станет необходимым.
Предыдущие попытки контролировать скорость света включали в себя пропускание света через различные материалы. Однако новая техника стала первой, при помощи которой скорость света можно регулировать в открытом пространстве без помощи дополнительных материалов для его ускорения или замедления.

«Это первая ясная демонстрация контроля импульса света в свободном пространстве, — говорит соавтор исследования Айма Абурадди. — Она открывает двери многим применениям, оптический буфер — лишь одно из них, но, самое главное, делается это простым способом, который можно повторить и который надежен».
Абурадди и его соавтор Эсат Кондакчи продемонстрировали, что могут ускорить световой импульс в 30 раз быстрее скорости света, замедлить его до половины скорости света, а также заставить импульс двигаться в обратную сторону.
Важно отметить, что речь идет о групповой скорости, и результаты исследований Абурадди никак не противоречат принципам Специальной теории относительности. Как пишут в своей работе исследователи, для контроля групповой скорости оптического импульса обычно требуется прохождение через материал или структуру с дисперсией, проработанной особым образом. В то же время, в свободном пространстве групповую скорость можно изменять путем пространственного структурирования профиля пучка. В средах с аномальной дисперсией групповая скорость может превышать световую, равно как и быть меньше нее и даже быть отрицательной.
Исследователи смогли разработать свою технику при помощи специального устройства, известного как пространственный световой модулятор для смешения пространственно-временных свойств света, что позволило им контролировать скорость светового импульса. Взаимодействие этих двух свойств стало ключом к успеху этой техники.
«Мы смогли контролировать скорость импульса, реорганизовав энергию его самого таким образом, чтобы его пространственные и временные степени свободы смешались друг с другом, — объясняет Абурадди. — Мы очень довольны результатами и надеемся, что это только отправная точка для будущих исследований».
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии