• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
22.02.2017
ФизТех
180

Насколько быстро можно передавать информацию внутри нанофотонных микропроцессоров?

Создана теория, позволяющая точно предсказывать шумы, возникающие при усилении фотонных и плазмонных сигналов в наноразмерных схемах.

Насколько быстро можно передавать информацию внутри нанофотонных микропроцессоров?
Насколько быстро можно передавать информацию внутри нанофотонных микропроцессоров? / Автор: Euclio Drusus

Исследователи из Лаборатории нанооптики и плазмоники Центра наноразмерной оптоэлектроники МФТИ создали теорию, позволяющую точно предсказывать шумы, возникающие при усилении фотонных и плазмонных сигналов в наноразмерных схемах. В статье, опубликованной в журнале Physical Review Applied, учёные представили алгоритмы расчёта максимальной скорости передачи данных внутри оптоэлектронных микропроцессоров ближайшего будущего и нашли фундаментальные ограничения на пропускную способность нанофотонных интерфейсов.

Поверхностные плазмон-поляритоны представляют собой коллективные колебания электронов на поверхности металла вместе с окружающим их электромагнитным полем. Упрощённо поверхностный плазмон можно описать как «сплюснутый» квант света, и именно это обуславливает перспективность плазмонных устройств: их размеры не сильно превосходят размеры наноэлектронных компонентов, но с их помощью можно передавать куда больше информации, чем по электрическим проводам. Даже частичная замена металлических соединений на чипе на плазмонные (нанофотонные) позволит существенно повысить производительность микропроцессоров.

Проблемой является затухание сигнала — поверхностные плазмоны могут распространяться лишь по активным волноводам, которые не просто направляют сигнал от источника к приёмнику, но и подпитывают его за счёт энергии проходящего через устройство электрического тока. Добавление энергии извне компенсирует потери, и сигнал так же свободно распространяется по такому волноводу, как идут стрелки кварцевых часов до тех пор, пока в них не сядет батарейка.

С усилением сигналов и компенсацией потерь связана фундаментальная проблема. Любой усилитель не только увеличивает амплитуду всего, что поступает на его вход, но и сам добавляет помехи. Такие помехи в физике называют шумом. Законы термодинамики указывают на то, что шум той или иной природы будет неизбежно возникать в любой системе: сделать устройство, в котором шумов нет, принципиально невозможно. Как правило, искажения исходного сигнала определяются именно шумом, что фундаментально ограничивает скорость передачи информации по различным каналам связи или вызывает ошибки при её приёме. А чтобы повысить скорость обмена данными, надо улучшить соотношение сигнал-шум. Важность этого соотношения легко поймёт каждый, кто пробовал общаться на оживлённой улице или настраивать радиоприёмник вдали от города.

«Шумы играют ключевую роль чуть ли не в половине всех бытовых устройств: начиная с мобильных телефонов и телевизоров и заканчивая оптоволоконными сетями интернета. Усиление сигнала неизбежно приводит к ухудшению соотношения сигнал-шум. Причём чем больше усиление или, как в нашем случае, компенсируемые потери, тем больше шума следует ожидать на выходе. В плазмонных волноводах с усилением это проявляется наиболее ярко», — комментирует актуальность проблемы Дмитрий Федянин.

В новой статье, представленной Дмитрием Федяниным и Андреем Вишневым на страницах журнала Physical Review Applied, речь идёт об особом виде шума, а именно о фотонном шуме, возникающем при усилении плазмонных сигналов в полупроводниковых устройствах. Основным его источником является так называемое спонтанное излучение. Дополнительная энергия поступает в сигнал при переходах электронов из состояний с большей энергией в состояния с меньшей: разница в энергии этих состояний излучается в виде световых квантов, и такое излучение может быть как вынужденным, так и спонтанным. Вынужденное излучение усиливает сигнал, а вот спонтанное даёт шум, причём в виде излучения с разной энергией квантов, то есть в широком спектре. Шум проявляется как случайные колебания интенсивности излучения, возникающие в результате биений — наложения отдельных частотных компонент сигнала и спонтанной эмиссии. При этом чем больше усиление, тем сильнее шум, тем шире спектры вынужденной и спонтанной эмиссии и тем менее правомерны подходы квантовой оптики, разработанные для описания отдельных атомов. Большое усиление на наномасштабах в активных плазмонных волноводах заставило исследователей решать задачу фактически с чистого листа.

«Нам пришлось объединить три области, которые крайне редко одновременно пересекаются друг с другом в научном мире: квантовую оптику, физику полупроводников и оптоэлектонику. Мы разработали подход к описанию фотонного шума в системах со средой, усиливающей в широком спектральном диапазоне. Несмотря на то, что изначально теория создавалась для плазмонных волноводов, наш подход можно применять для любых оптических усилителей и подобных им систем», — объясняет Дмитрий Федянин.

Шум ведёт к ошибкам при передаче данных, что сильно снижает фактическую скорость передачи информации из-за необходимости использовать алгоритмы коррекции ошибок. Коррекция ошибок, помимо уменьшения скорости, требует наличия в чипе дополнительных компонентов, которые бы эту коррекцию реализовывали на аппаратном уровне, что значительно усложняет как проектирование, так и производство новых устройств.

«Зная мощность шума в нанофотонном канале связи и спектральные характеристики шума, можно вычислить, с какой максимальной скоростью возможно передавать информацию по такому каналу. Кроме того, мы можем определить, как уменьшить шум, выбирая определённые режимы работы устройства и используя электронную или оптическую фильтрацию», — продолжает Андрей Вишневый.

Новая теория позволяет, в частности, понять, возможно ли в будущем создание принципиально нового класса устройств — плазмонно-электронных чипов. В таких чипах компактные плазмонные компоненты должны применяться для передачи данных между вычислительными ядрами и регистрами процессора на сверхвысоких скоростях. Ранее считалось, что основным препятствием на этом пути является ослабление сигнала; однако, согласно работе исследователей из МФТИ, после компенсации потерь на первый план выходит проблема шумов. Сигнал, в принципе, может просто утонуть в шуме спонтанного излучения, что сделает чип абсолютно бесполезным.

Проведённые исследователями расчёты показывают, что в активном плазмонном волноводе размером лишь 200×200 нанометров можно эффективно передавать сигнал на расстояние до 5 миллиметров. Это расстояние может показаться очень малым по бытовым меркам, но оно является типичным для современных микропроцессоров. При этом скорость передачи информации будет превышать 10 Гбит/с на один спектральный канал (канал передачи информации, реализованный на фиксированной длине волны), а таких спектральных каналов в одном наноразмерном волноводе умещается до нескольких десятков при использовании технологии спектрального уплотнения каналов, которая применяется во всех оптических линиях коммуникации, включая широкополосный интернет. Для сравнения: максимальная скорость передачи информации по электрическому соединению тех же размеров (т. е. по медной дорожке на чипе) составляет всего 20 Мбит/с, то есть более чем в 500 раз меньше!

Учёные подробно исследовали, как меняются характеристики шума и его мощность в зависимости от параметров плазмонного волновода с компенсацией потерь, а также показали, как можно понизить уровень шума для достижения максимальной пропускной способности такого нанофотонного интерфейса. Они продемонстрировали сочетание малых размеров, малого числа ошибок при высокой скорости передачи данных и достаточно высокой энергоэффективности в одном устройстве, что может уже в ближайшее десятилетие обеспечить «плазмонный прорыв» в микроэлектронике.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Позавчера, 16:02
Березин Александр

Экс-спикер Минобороны Армении Арцрун Ованнисян в эфире армянского Общественного телевидения решил «развеять миф» о Второй мировой войне. В частности, он заявил, что выигрыш Сталинградской битвы был не спасением для страны. Напротив, если бы немцы победили, уверен он, была бы создана объединенная историческая Армения — куда вошли бы земли, сегодня удерживаемые Турцией. Так ли все было на самом деле?

17 мая
Любовь

Рыжие кошки давно привлекали внимание генетиков: большинство из них — самцы, среди самок такой окрас встречается значительно реже. Точку в этом вопросе поставили исследователи из Японии, обнаружив мутацию, отвечающую за рыжий окрас у домашних кошек.

Позавчера, 20:14
Редакция Naked Science

Крис Фалкенберг (Chris Falkenberg) — концепт-дизайнер и цифровой иллюстратор из США, чьи работы создают эффект погружения в далёкие миры, высокотехнологичные цивилизации и воображаемые космические сценарии. Его художественный стиль сочетает точность технического рендеринга с кинематографичной атмосферой.

Позавчера, 16:02
Березин Александр

Экс-спикер Минобороны Армении Арцрун Ованнисян в эфире армянского Общественного телевидения решил «развеять миф» о Второй мировой войне. В частности, он заявил, что выигрыш Сталинградской битвы был не спасением для страны. Напротив, если бы немцы победили, уверен он, была бы создана объединенная историческая Армения — куда вошли бы земли, сегодня удерживаемые Турцией. Так ли все было на самом деле?

14 мая
Андрей

Споры вокруг выделения антропоцена в самостоятельную геологическую эпоху не утихли после официального отказа Международного союза геологических наук, наоборот, разожглись сильнее. Шведские геологи, придерживаясь логики союза, решили оценить легитимность других периодов кайнозойской эры и выяснили, что доказательства в пользу голоцена слабее, чем у антропоцена. Если идти дальше, то и половину ступеней кайнозоя можно откинуть.

17 мая
Любовь

Рыжие кошки давно привлекали внимание генетиков: большинство из них — самцы, среди самок такой окрас встречается значительно реже. Точку в этом вопросе поставили исследователи из Японии, обнаружив мутацию, отвечающую за рыжий окрас у домашних кошек.

6 мая
Редакция Naked Science

Да, с волосами и люком все так. У космонавта Суниты Уильямс волосы на МКС плавали свободно, а у Кэти Пэрри и прочих в полете 14 апреля 2025 года — нет. Но это не значит, что суборбитального космического полета первого чисто женского экипажа не было или что он был инсценировкой. Причем, в общем-то, чтобы понять это, даже не нужно обладать специальными знаниями.

6 мая
Березин Александр

Мощнейшее отключение электроэнергии за последние 20 лет истории Европы случилось уже неделю назад, а испанские власти пока так и не объявили о его причинах. Это логично: как мы покажем ниже, ответ на вопрос, кто виноват, получится очень неполиткорректным. И, более того, противоречащим линии правящей в Испании партии. Но мы живем за тысячи километров от нее, поэтому можем себе позволить аполитичный анализ случившегося. Так что же произошло на самом деле и каковы наши шансы увидеть подобное у себя дома?

2 мая
Unitsky String Technologies Inc.

Инженеры компании UST Inc. разработали передовой рельсовый беспилотник, способный передвигаться на скорости до 500 километров в час. Юнибус U5-75304 предназначен для перевозки пассажиров и может в перспективе заменить среднемагистральную авиацию. Давайте узнаем, как конструктивные особенности обеспечивают продолжительное движение на больших скоростях, комфорт и безопасность пассажирам.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно