Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Насколько быстро можно передавать информацию внутри нанофотонных микропроцессоров?
Создана теория, позволяющая точно предсказывать шумы, возникающие при усилении фотонных и плазмонных сигналов в наноразмерных схемах.
Исследователи из Лаборатории нанооптики и плазмоники Центра наноразмерной оптоэлектроники МФТИ создали теорию, позволяющую точно предсказывать шумы, возникающие при усилении фотонных и плазмонных сигналов в наноразмерных схемах. В статье, опубликованной в журнале Physical Review Applied, учёные представили алгоритмы расчёта максимальной скорости передачи данных внутри оптоэлектронных микропроцессоров ближайшего будущего и нашли фундаментальные ограничения на пропускную способность нанофотонных интерфейсов.
Поверхностные плазмон-поляритоны представляют собой коллективные колебания электронов на поверхности металла вместе с окружающим их электромагнитным полем. Упрощённо поверхностный плазмон можно описать как «сплюснутый» квант света, и именно это обуславливает перспективность плазмонных устройств: их размеры не сильно превосходят размеры наноэлектронных компонентов, но с их помощью можно передавать куда больше информации, чем по электрическим проводам. Даже частичная замена металлических соединений на чипе на плазмонные (нанофотонные) позволит существенно повысить производительность микропроцессоров.
Проблемой является затухание сигнала — поверхностные плазмоны могут распространяться лишь по активным волноводам, которые не просто направляют сигнал от источника к приёмнику, но и подпитывают его за счёт энергии проходящего через устройство электрического тока. Добавление энергии извне компенсирует потери, и сигнал так же свободно распространяется по такому волноводу, как идут стрелки кварцевых часов до тех пор, пока в них не сядет батарейка.
С усилением сигналов и компенсацией потерь связана фундаментальная проблема. Любой усилитель не только увеличивает амплитуду всего, что поступает на его вход, но и сам добавляет помехи. Такие помехи в физике называют шумом. Законы термодинамики указывают на то, что шум той или иной природы будет неизбежно возникать в любой системе: сделать устройство, в котором шумов нет, принципиально невозможно. Как правило, искажения исходного сигнала определяются именно шумом, что фундаментально ограничивает скорость передачи информации по различным каналам связи или вызывает ошибки при её приёме. А чтобы повысить скорость обмена данными, надо улучшить соотношение сигнал-шум. Важность этого соотношения легко поймёт каждый, кто пробовал общаться на оживлённой улице или настраивать радиоприёмник вдали от города.
«Шумы играют ключевую роль чуть ли не в половине всех бытовых устройств: начиная с мобильных телефонов и телевизоров и заканчивая оптоволоконными сетями интернета. Усиление сигнала неизбежно приводит к ухудшению соотношения сигнал-шум. Причём чем больше усиление или, как в нашем случае, компенсируемые потери, тем больше шума следует ожидать на выходе. В плазмонных волноводах с усилением это проявляется наиболее ярко», — комментирует актуальность проблемы Дмитрий Федянин.
В новой статье, представленной Дмитрием Федяниным и Андреем Вишневым на страницах журнала Physical Review Applied, речь идёт об особом виде шума, а именно о фотонном шуме, возникающем при усилении плазмонных сигналов в полупроводниковых устройствах. Основным его источником является так называемое спонтанное излучение. Дополнительная энергия поступает в сигнал при переходах электронов из состояний с большей энергией в состояния с меньшей: разница в энергии этих состояний излучается в виде световых квантов, и такое излучение может быть как вынужденным, так и спонтанным. Вынужденное излучение усиливает сигнал, а вот спонтанное даёт шум, причём в виде излучения с разной энергией квантов, то есть в широком спектре. Шум проявляется как случайные колебания интенсивности излучения, возникающие в результате биений — наложения отдельных частотных компонент сигнала и спонтанной эмиссии. При этом чем больше усиление, тем сильнее шум, тем шире спектры вынужденной и спонтанной эмиссии и тем менее правомерны подходы квантовой оптики, разработанные для описания отдельных атомов. Большое усиление на наномасштабах в активных плазмонных волноводах заставило исследователей решать задачу фактически с чистого листа.
«Нам пришлось объединить три области, которые крайне редко одновременно пересекаются друг с другом в научном мире: квантовую оптику, физику полупроводников и оптоэлектонику. Мы разработали подход к описанию фотонного шума в системах со средой, усиливающей в широком спектральном диапазоне. Несмотря на то, что изначально теория создавалась для плазмонных волноводов, наш подход можно применять для любых оптических усилителей и подобных им систем», — объясняет Дмитрий Федянин.
Шум ведёт к ошибкам при передаче данных, что сильно снижает фактическую скорость передачи информации из-за необходимости использовать алгоритмы коррекции ошибок. Коррекция ошибок, помимо уменьшения скорости, требует наличия в чипе дополнительных компонентов, которые бы эту коррекцию реализовывали на аппаратном уровне, что значительно усложняет как проектирование, так и производство новых устройств.
«Зная мощность шума в нанофотонном канале связи и спектральные характеристики шума, можно вычислить, с какой максимальной скоростью возможно передавать информацию по такому каналу. Кроме того, мы можем определить, как уменьшить шум, выбирая определённые режимы работы устройства и используя электронную или оптическую фильтрацию», — продолжает Андрей Вишневый.
Новая теория позволяет, в частности, понять, возможно ли в будущем создание принципиально нового класса устройств — плазмонно-электронных чипов. В таких чипах компактные плазмонные компоненты должны применяться для передачи данных между вычислительными ядрами и регистрами процессора на сверхвысоких скоростях. Ранее считалось, что основным препятствием на этом пути является ослабление сигнала; однако, согласно работе исследователей из МФТИ, после компенсации потерь на первый план выходит проблема шумов. Сигнал, в принципе, может просто утонуть в шуме спонтанного излучения, что сделает чип абсолютно бесполезным.
Проведённые исследователями расчёты показывают, что в активном плазмонном волноводе размером лишь 200×200 нанометров можно эффективно передавать сигнал на расстояние до 5 миллиметров. Это расстояние может показаться очень малым по бытовым меркам, но оно является типичным для современных микропроцессоров. При этом скорость передачи информации будет превышать 10 Гбит/с на один спектральный канал (канал передачи информации, реализованный на фиксированной длине волны), а таких спектральных каналов в одном наноразмерном волноводе умещается до нескольких десятков при использовании технологии спектрального уплотнения каналов, которая применяется во всех оптических линиях коммуникации, включая широкополосный интернет. Для сравнения: максимальная скорость передачи информации по электрическому соединению тех же размеров (т. е. по медной дорожке на чипе) составляет всего 20 Мбит/с, то есть более чем в 500 раз меньше!
Учёные подробно исследовали, как меняются характеристики шума и его мощность в зависимости от параметров плазмонного волновода с компенсацией потерь, а также показали, как можно понизить уровень шума для достижения максимальной пропускной способности такого нанофотонного интерфейса. Они продемонстрировали сочетание малых размеров, малого числа ошибок при высокой скорости передачи данных и достаточно высокой энергоэффективности в одном устройстве, что может уже в ближайшее десятилетие обеспечить «плазмонный прорыв» в микроэлектронике.
Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.
Ученые из МФТИ и Национального исследовательского центра «Курчатовский институт» создали первую в своем роде полную классификацию конических сингулярностей в геометрии Минковского. Это фундаментальное достижение в математической физике заполняет пробел, существовавший в общей теории относительности более 60 лет.
На уникальных древнеримских стеклянных сосудах обнаружили тайные знаки, которые оказались клеймами ремесленных мастерских. Эти символы, ранее считавшиеся простым украшением, раскрыли, как работали античные мастера, и помогли доказать существование аналогов современных брендов почти две тысячи лет назад.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии