Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В ЮФУ приблизились к пониманию происхождения антигелия в космосе
Ученые НИИ физики ЮФУ предложили формализм, описывающий эволюцию больших областей антивещества во Вселенной с преобладанием вещества. Такой подход позволит определить параметры, на которых основывается современная теория строения и эволюции Вселенной, и предсказать свойства небесных тел из антивещества в Галактике — источников антигелия в космических лучах.
В физике микромира все заряженные частицы имеют античастицы с электрическим зарядом, противоположным их собственному. Так, античастицей электрона, который имеет заряд -1, является позитрон с зарядом +1. Анти-частичный аналог имеют и обычные формы вещества. Например, в антимире ядро гелия состоит из антипротонов и антинейтронов, вместо протонов и нейтронов. При этом ядерные и электромагнитные свойства мира и антимира строго симметричны. Казалось бы, симметрия мира и антимира должна была бы приводить к их сосуществованию во Вселенной, но на их границе происходила бы аннигиляция вещества и антивещества, при которой половина их энергии покоя превращается в жесткое гамма-излучение. Измерения космического гамма-фона исключают поэтому сопоставимое количество вещества и антивещества во Вселенной.
Это наблюдаемое преобладание вещества над антивеществом, известное как барионная асимметрия Вселенной, современная космология объясняет механизмом бариосинтеза — образованием избытка вещества в ранней Вселенной за счет отличия слабых и сверх-слабых взаимодействий частиц и античастиц.
Однако, если бариосинтез сильно неоднороден, макроскопические области с избытком антивещества могут быть созданы в ходе того же процесса, в результате которого возникает избыток вещества во Вселенной. Эта «экзотическая» возможность существования первичных объектов из антивещества в нашей галактике, выявленная в космомикрофизических исследованиях профессора, доктора физико-математических наук, главного научного сотрудника НИИ физики ЮФУ Максима Хлопова дала теоретические основания и стимулировала поиск ядер антигелия в космических лучах в эксперименте AMS02. На семинаре ЦЕРН 8 июня 2023 года руководителем этого эксперимента, лауреатом Нобелевской премии Сэмюэлем Тингом были представлены первые указания на подтверждение такой возможности.
На семинаре Тинг презентовал последние результаты уникального международного эксперимента AMS02 по точному определению состава и спектра космических лучей на Международной космической станции. Особую роль в его экспериментальной установке играет магнитный спектрометр, который позволяет измерить не только массу и энергию заряженных частиц, но и знак их заряда, так как частицы с зарядом противоположного знака отклоняются в магнитном поле установки в разные стороны.
Эксперимент уже открыл целый ряд новых явлений физики космических лучей и в том числе показал событие, отвечающее регистрации прохождения в установке ядра антигелия. До сих пор считалось, что компонента антигелия не должна наблюдаться в космических лучах, поскольку ее ожидаемый поток от естественных астрофизических источников предсказывается в миллионы раз меньше, чем был зарегистрирован в эксперименте AMS02.
В то же время, развивая отечественные исследования о возможности существования макроскопических объектов из антивещества, ученые Научно-исследовательского института физики ЮФУ разработали формализм описания эволюции структуры доменов антивещества в окружении вещества.
Новый формализм учитывает эволюцию областей антивещества и аннигиляцию с веществом, происходящую на их границах. «С помощью нашего метода можно изучать структуры указанных областей, включая области очень высокой и сверхвысокой плотности антивещества, а также выводить уравнения, описывающие их эволюцию в расширяющейся Вселенной», – указал профессор Максим Хлопов.
Этот метод будет использоваться для разработки космологических сценариев, которые будут связывать процессы, происходящие в очень ранней Вселенной, с предсказанными формами и свойствами макроскопической компоненты антиматерии, присутствующей в нашей галактике. По словам профессора, результаты исследования позволят связать классы моделей физики, привлекаемые современной космологией для описания структуры и эволюции Вселенной с предсказанием форм макроскопического антивещества в Галактике, которые могли бы объяснить источник антигелия в космических лучах.
«В контексте наших исследований подтверждение существования космического антигелия в эксперименте АМS02 позволит определить с астрономической точностью параметры моделей новой физики, лежащих в основе современной теории Вселенной», — отметил Максим Хлопов. Может ли отмеченная С. Тингом регистрация прохождения в установке ядра антигелия быть вызвана неправильной траекторией одного из зарегистрированных десятков миллионов ядер гелия? По словам Тинга на семинаре ЦЕРН, исследователи исключили любую фоновую интерпретацию этого события. Они также планируют провести дополнительные исследования в ближайшие годы, прежде чем официально объявить об открытии космического антигелия.
«Мы считаем, что это время можно использовать для всестороннего анализа ожидаемых результатов с целью решения проблем космомикрофизики. Наша работа нацелена на установление логической цепочки образования доменов антивещества в ранней Вселенной через их эволюцию в окружающем веществе и определение возможных форм небесных тел из антивещества в нашей Галактике – источников космического антигелия», — дополнил Максим Хлопов. Результаты исследования, проводимого в лаборатории космомикрофизики НИИ Физики ЮФУ при финансовой поддержке Минобрнауки России изложены в журнале Galaxies.
Говорят, что математикам для работы достаточно всего лишь бумаги, карандаша и ластика. Но им прежде всего для работы нужны идеи и — свобода. Именно так считает Александр Буфетов, ведущий научный сотрудник Математического института им. В. А. Стеклова РАН. Мы поговорили с ним о том, как он пришел в науку, что вдохновляет его в исследовательской работе, как математика соединяет философию, теорию и практику и что такое академическая свобода лично для него.
Мандарины, апельсины, грейпфруты... Их аромат прочно связан с теплыми воспоминаниями и праздничным настроением. Но что мы знаем об их истории и пользе для нашего организма? Эксперты Пермского Политеха рассказали о появлении этих фруктов в России, почему в Китае мандарины называют «золотыми», а молодежь в нашей стране больше не считает их символом Нового года, как цитрусовые противостоят свободным радикалам, помогают выздороветь и похудеть, зачем их добавляют в антицеллюлитные кремы и лосьоны и из-за чего нельзя есть грейпфрут натощак.
Про то, как землетрясения влияют на климат, почему нужно готовиться не только к отрицательным, но и к положительным изменениям климата, сколько больших климатических моделей существует и на чем они основаны, и про многое другое мы поговорили с академиком Игорем Моховым, научным руководителем Института физики атмосферы РАН и профессором МФТИ.
Ученые из Троицкого института инновационных и термоядерных исследований, МФТИ и МЭИ совершили значительный прорыв в области защиты материалов от экстремальных тепловых нагрузок, характерных для условий управляемого термоядерного синтеза.
Группа климатологов проанализировала массив спутниковых снимков озер и водохранилищ по всей планете, сделанных с 1984 по 2021 год. Ученые обратили внимание на цвет поверхности водоемов и выяснили, что у большинства он изменился — преимущественно в сторону коротковолнового диапазона. Иными словами, экология десятков тысяч озер оказалась нестабильной.
Астронавтам новой лунной программы «Артемида» предстоит работать совсем не в тех условиях освещения, в каких по Луне ходили их легендарные предшественники — члены экипажей «Аполлонов». Будущие высадки должны состояться в полярном регионе, где Солнце никогда не поднимается высоко над горизонтом, а значит, постоянно слепит глаза и при этом отбрасывает длинные тени, в которых практически ничего не видно. В NASA признались, что упустили из виду этот аспект при планировании миссий.
Американская лунная программа «Артемида» предусматривает экспедиции длительностью от нескольких дней до долгих недель и даже месяцев, но луномобиля для передвижения экипажа по поверхности спутника Земли на сегодня нет. Поэтому космическое агентство США продумывает план действий на случай, если астронавты окажутся далеко от базы и кто-то из них внезапно не сможет идти самостоятельно.
Ученые из Троицкого института инновационных и термоядерных исследований, МФТИ и МЭИ совершили значительный прорыв в области защиты материалов от экстремальных тепловых нагрузок, характерных для условий управляемого термоядерного синтеза.
Согласно популярному утверждению, человеческая мысль — едва ли не самое быстрое, что существует в природе. Даже свет многие считают менее быстрым, поскольку он распространяется со скоростью 300 тысяч километров в секунду, а мысль — «мгновенно». Однако новое исследование опровергло бытовую логику. Ученые из Калтеха измерили скорость, с которой человек обрабатывает информацию, и обнаружили, что основные когнитивные процессы во много раз медленнее не только распространения света, но и низкоскоростного интернета.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии