Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ узнали, как зарабатывать на новостях
Ученые из НИУ ВШЭ — Санкт-Петербург и ВТБ разработали первый для российского рынка алгоритм, позволяющий предсказывать колебания котировок акций на основе анализа новостного потока STTM (Stock Tonal Topic Modeling). Благодаря новой разработке инвесторы смогут строить более эффективные финансовые стратегии: алгоритм позволяет делать прогнозы в пределах месяца.
Результаты работы опубликованы в журнале PeerJ Computer Science. Можно ли предсказать рост или падение акций на фондовом рынке? Согласно одной из основных инвестиционных теорий, гипотезе эффективного рынка, акции торгуются на бирже по справедливой стоимости, в которой уже учтена вся доступная общественности информация, способная повлиять на котировки. Поэтому анализ этой информации и основанные на ней прогнозы не могут служить базой для построения эффективной инвестиционной стратегии.
Однако инвесторы не оставляли попыток угадать изменения котировок акций на бирже. Для этого использовались различные подходы, которые можно разделить на две основные группы: прогнозы на основе прошлых котировок акций и прогнозы на основе анализа внешних источников информации, таких как финансовые отчеты, новости, мнение аналитиков. Но общепринятого алгоритма для предсказания поведения акций на бирже с учетом новостного потока не существовало.
Ученые из НИУ ВШЭ — Санкт-Петербург и ВТБ разработали новый метод для прогнозирования колебаний котировок акций на основе анализа новостей — STTM (Stock Tonal Topic Modeling). Особенность метода в том, что он использует сразу два источника данных: изменение цены акций во времени и новостные статьи, а также алгоритмы тематического моделирования и определения тональности, что позволяет делать более точные прогнозы. Это первая модель, разработанная специально для российского финансового рынка.
Алгоритм STTM собирает новости из крупнейших российских СМИ, пишущих о бизнесе, финансах, политике («Коммерсантъ», «Ведомости», РИА «Новости»), затем сортирует эти новости по темам (например, спорт, политика, экономика, бизнес). Сортировка происходит на основе алгоритмов тематического моделирования (LDA и DTM). В тематических блоках выделяются ключевые слова и их тональность: позитивная, негативная, нейтральная. Метод STTM также отслеживает изменение котировок акций российских компаний во времени, например за прошедшую неделю. Сочетание этих факторов — колебание цены во времени, тематическое моделирование и тональность новостей — позволяет рассчитать коэффициент STTM. Если он больше единицы, то акции вырастут в цене, если меньше — упадут.
В рамках исследования было проанализировано более 197 тысяч экономических статей из российских СМИ и использованы данные котировок наиболее ликвидных акций российских компаний за восемь лет, с 2013 по 2021 год. Эффективность метода STTM проверялась с помощью теста на причинность по Грейнджеру: авторы исследования изучали причинно-следственную связь между новостным потоком, разбитым на темы, и колебаниями котировок акций. Кроме того, на основании полученных прогнозов моделировалась возможная инвестиционная стратегия, эффективность которой оценивалась по коэффициенту Шарпа — показателю эффективности инвестиционного портфеля.
Исследователи отмечают, что разработанный метод позволяет довольно точно предсказывать колебания цен на фондовом рынке и превосходит 26 существующих моделей по индексу Шарпа. «Мы не первые придумали анализировать новости для предсказания котировок, но мы впервые использовали эту модель для российского рынка. И мы впервые использовали тематическое моделирование и тональность для предсказания поведения акций на бирже с учетом множества тем. Наша модель хороша тем, что ее можно настроить под свои потребности: выбрать интересующие СМИ, нужный временной интервал, алгоритм тематического моделирования, даже язык», — рассказывает один из авторов исследования Сергей Кольцов, ведущий научный сотрудник Лаборатории социальной и когнитивной информатики НИУ ВШЭ — Санкт-Петербург. Алгоритм STTM позволяет делать недельные прогнозы, а код лежит в открытом доступе на Zenodo.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
Ученые заново просмотрели старые записи о наблюдениях с помощью телескопа «Большое Ухо», который поймал знаменитый радиосигнал Wow!, и обнаружили данные о еще двух похожих событиях. Астрономы пришли к выводу, что это не могли быть обыкновенные земные радиопомехи и во всех трех случаях источник действительно располагался в глубоком космосе.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии