Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ узнали, как зарабатывать на новостях
Ученые из НИУ ВШЭ — Санкт-Петербург и ВТБ разработали первый для российского рынка алгоритм, позволяющий предсказывать колебания котировок акций на основе анализа новостного потока STTM (Stock Tonal Topic Modeling). Благодаря новой разработке инвесторы смогут строить более эффективные финансовые стратегии: алгоритм позволяет делать прогнозы в пределах месяца.
Результаты работы опубликованы в журнале PeerJ Computer Science. Можно ли предсказать рост или падение акций на фондовом рынке? Согласно одной из основных инвестиционных теорий, гипотезе эффективного рынка, акции торгуются на бирже по справедливой стоимости, в которой уже учтена вся доступная общественности информация, способная повлиять на котировки. Поэтому анализ этой информации и основанные на ней прогнозы не могут служить базой для построения эффективной инвестиционной стратегии.
Однако инвесторы не оставляли попыток угадать изменения котировок акций на бирже. Для этого использовались различные подходы, которые можно разделить на две основные группы: прогнозы на основе прошлых котировок акций и прогнозы на основе анализа внешних источников информации, таких как финансовые отчеты, новости, мнение аналитиков. Но общепринятого алгоритма для предсказания поведения акций на бирже с учетом новостного потока не существовало.
Ученые из НИУ ВШЭ — Санкт-Петербург и ВТБ разработали новый метод для прогнозирования колебаний котировок акций на основе анализа новостей — STTM (Stock Tonal Topic Modeling). Особенность метода в том, что он использует сразу два источника данных: изменение цены акций во времени и новостные статьи, а также алгоритмы тематического моделирования и определения тональности, что позволяет делать более точные прогнозы. Это первая модель, разработанная специально для российского финансового рынка.

Алгоритм STTM собирает новости из крупнейших российских СМИ, пишущих о бизнесе, финансах, политике («Коммерсантъ», «Ведомости», РИА «Новости»), затем сортирует эти новости по темам (например, спорт, политика, экономика, бизнес). Сортировка происходит на основе алгоритмов тематического моделирования (LDA и DTM). В тематических блоках выделяются ключевые слова и их тональность: позитивная, негативная, нейтральная. Метод STTM также отслеживает изменение котировок акций российских компаний во времени, например за прошедшую неделю. Сочетание этих факторов — колебание цены во времени, тематическое моделирование и тональность новостей — позволяет рассчитать коэффициент STTM. Если он больше единицы, то акции вырастут в цене, если меньше — упадут.
В рамках исследования было проанализировано более 197 тысяч экономических статей из российских СМИ и использованы данные котировок наиболее ликвидных акций российских компаний за восемь лет, с 2013 по 2021 год. Эффективность метода STTM проверялась с помощью теста на причинность по Грейнджеру: авторы исследования изучали причинно-следственную связь между новостным потоком, разбитым на темы, и колебаниями котировок акций. Кроме того, на основании полученных прогнозов моделировалась возможная инвестиционная стратегия, эффективность которой оценивалась по коэффициенту Шарпа — показателю эффективности инвестиционного портфеля.
Исследователи отмечают, что разработанный метод позволяет довольно точно предсказывать колебания цен на фондовом рынке и превосходит 26 существующих моделей по индексу Шарпа. «Мы не первые придумали анализировать новости для предсказания котировок, но мы впервые использовали эту модель для российского рынка. И мы впервые использовали тематическое моделирование и тональность для предсказания поведения акций на бирже с учетом множества тем. Наша модель хороша тем, что ее можно настроить под свои потребности: выбрать интересующие СМИ, нужный временной интервал, алгоритм тематического моделирования, даже язык», — рассказывает один из авторов исследования Сергей Кольцов, ведущий научный сотрудник Лаборатории социальной и когнитивной информатики НИУ ВШЭ — Санкт-Петербург. Алгоритм STTM позволяет делать недельные прогнозы, а код лежит в открытом доступе на Zenodo.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
