Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ узнали, как зарабатывать на новостях
Ученые из НИУ ВШЭ — Санкт-Петербург и ВТБ разработали первый для российского рынка алгоритм, позволяющий предсказывать колебания котировок акций на основе анализа новостного потока STTM (Stock Tonal Topic Modeling). Благодаря новой разработке инвесторы смогут строить более эффективные финансовые стратегии: алгоритм позволяет делать прогнозы в пределах месяца.
Результаты работы опубликованы в журнале PeerJ Computer Science. Можно ли предсказать рост или падение акций на фондовом рынке? Согласно одной из основных инвестиционных теорий, гипотезе эффективного рынка, акции торгуются на бирже по справедливой стоимости, в которой уже учтена вся доступная общественности информация, способная повлиять на котировки. Поэтому анализ этой информации и основанные на ней прогнозы не могут служить базой для построения эффективной инвестиционной стратегии.
Однако инвесторы не оставляли попыток угадать изменения котировок акций на бирже. Для этого использовались различные подходы, которые можно разделить на две основные группы: прогнозы на основе прошлых котировок акций и прогнозы на основе анализа внешних источников информации, таких как финансовые отчеты, новости, мнение аналитиков. Но общепринятого алгоритма для предсказания поведения акций на бирже с учетом новостного потока не существовало.
Ученые из НИУ ВШЭ — Санкт-Петербург и ВТБ разработали новый метод для прогнозирования колебаний котировок акций на основе анализа новостей — STTM (Stock Tonal Topic Modeling). Особенность метода в том, что он использует сразу два источника данных: изменение цены акций во времени и новостные статьи, а также алгоритмы тематического моделирования и определения тональности, что позволяет делать более точные прогнозы. Это первая модель, разработанная специально для российского финансового рынка.
Алгоритм STTM собирает новости из крупнейших российских СМИ, пишущих о бизнесе, финансах, политике («Коммерсантъ», «Ведомости», РИА «Новости»), затем сортирует эти новости по темам (например, спорт, политика, экономика, бизнес). Сортировка происходит на основе алгоритмов тематического моделирования (LDA и DTM). В тематических блоках выделяются ключевые слова и их тональность: позитивная, негативная, нейтральная. Метод STTM также отслеживает изменение котировок акций российских компаний во времени, например за прошедшую неделю. Сочетание этих факторов — колебание цены во времени, тематическое моделирование и тональность новостей — позволяет рассчитать коэффициент STTM. Если он больше единицы, то акции вырастут в цене, если меньше — упадут.
В рамках исследования было проанализировано более 197 тысяч экономических статей из российских СМИ и использованы данные котировок наиболее ликвидных акций российских компаний за восемь лет, с 2013 по 2021 год. Эффективность метода STTM проверялась с помощью теста на причинность по Грейнджеру: авторы исследования изучали причинно-следственную связь между новостным потоком, разбитым на темы, и колебаниями котировок акций. Кроме того, на основании полученных прогнозов моделировалась возможная инвестиционная стратегия, эффективность которой оценивалась по коэффициенту Шарпа — показателю эффективности инвестиционного портфеля.
Исследователи отмечают, что разработанный метод позволяет довольно точно предсказывать колебания цен на фондовом рынке и превосходит 26 существующих моделей по индексу Шарпа. «Мы не первые придумали анализировать новости для предсказания котировок, но мы впервые использовали эту модель для российского рынка. И мы впервые использовали тематическое моделирование и тональность для предсказания поведения акций на бирже с учетом множества тем. Наша модель хороша тем, что ее можно настроить под свои потребности: выбрать интересующие СМИ, нужный временной интервал, алгоритм тематического моделирования, даже язык», — рассказывает один из авторов исследования Сергей Кольцов, ведущий научный сотрудник Лаборатории социальной и когнитивной информатики НИУ ВШЭ — Санкт-Петербург. Алгоритм STTM позволяет делать недельные прогнозы, а код лежит в открытом доступе на Zenodo.
Ледяной гигант Уран давно привлекает внимание экстремальным наклоном и самой холодной атмосферой в Солнечной системе. Тем не менее ученые подозревали, что он производит собственное тепло. Теперь данные измерений показали, что это действительно так.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Из всех геологических эпох плиоцен и ранний плейстоцен наиболее похожи на возможное будущее Земли, если глобальное потепление продолжится. Неудивительно, что ученые стремятся узнать больше о видовом разнообразии того периода. До недавнего времени они могли изучать только следы генома пыльцы и крупных окаменелостей. Решением проблемы стал метод анализа eDNA — генетического материала из продуктов жизнедеятельности, сохраняющегося в осадочных породах. Недавно он помог реконструировать экосистему геологической формации Кап-Кёбенхавн на Севере Гренландии, возникшую два миллиона лет назад при средней температуре на 10 градусов выше современной. Теперь ученые исследовали микроорганизмы оттуда и обнаружили поразительное сходство с современными болотными угодьями.
Исследователи из Южной Кореи и Канады нашли новое объяснение «парадоксу счастья». Они обнаружили, что попытки стать счастливее приводят к противоположному результату, потому что истощают систему самоконтроля.
Сегодня, 2 марта 2025 года, аппарат Blue Ghost, построенный техасской компанией Firefly Aerospace, мягко прилунился в Море Кризисов. До сих пор все попытки частных аппаратов сделать это заканчивались не вполне удачно.
Пон Джун‑хо вновь удивил мир кино своим последним проектом «Микки 17», представленным вне конкурса на 75‑м Берлинском кинофестивале. Эта третья англоязычная работа режиссера после «Сквозь снег» и «Окчи» успела привлечь внимание критиков благодаря гармоничному сочетанию научной фантастики, социальной сатиры и черного юмора.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
Астрономы обнаружили, что почти треть всех наблюдаемых галактик во Вселенной объединены в пять самых широкомасштабных структур — галактические сверхскопления. На составленной учеными трехмерной карте одно особенно выделяется своими рекордными размерами: простирается на миллиард с лишним световых лет.
Европейские палеонтологи изучили исключительно сохранившийся скелет плезиозавра из юрского периода, обнаруженный в Германии еще в 1940 году. Тогда ископаемую рептилию спрятали от разрушений войны в музей, а через 80 лет выяснилось, что на теле древнего животного остались мягкие ткани — кожа с уцелевшими клеточными ядрами и чешуйки. Новые данные дополняют представление о внешнем виде плезиозавров, живших больше 180 миллионов лет назад.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии