• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
3 часа назад
ФизТех
86

Российский радиотелескоп обнаружил возможные источники ультра-высокоэнергетических нейтрино

4.8

Группа международных исследователей, работающая в рамках эксперимента KM3NeT — глубоководной нейтринной обсерватории в Средиземном море, зафиксировала уникальное событие: они детектировали ультра‑высокоэнергетическое нейтрино с оценочной энергией около 220 петаэлектронвольт (ПэВ). Это самое высокое значение, зафиксированное на сегодняшний день.

Представление художника о блазаре / © NASA/JPL-Caltech/GSFC, ru.wikipedia.org

Международный коллектив ученых, использующий в том числе данные российского радиотелескопа РАТАН-600 на Северном Кавказе, провел многочастотный анализ, направленный на поиск источников этого события, и сосредоточил внимание на активных ядрах галактик, известных как блазары. По результатам их работы вышел препринт, авторами которого стали ученые из международного консорциума KM3NeT и нескольких групп астрофизиков, в том числе российские авторы из Специальной астрофизической обсерватории (САО) РАН и Института ядерных исследований (ИЯИ) РАН, Физического института имени Лебедева РАН (ФИАН), Московского физико-технического института (МФТИ) и Казанского государственного университета (КГУ).

Начиная с середины XX века исследователи пытались разгадать природу космических лучей — частиц, достигающих Земли с космических источников с поразительными энергиями. Особый интерес представляет исследование нейтрино — почти не взаимодействующих с веществом элементарных частиц, которые способны переносить информацию о самых экстремальных процессах во Вселенной.

Пионерским событием стал случай, зарегистрированный обсерваторией IceCube в 2017 году, когда очередное детектирование нейтрино было связано с блазаром TXS 0506+056, что открыло новую эру в астрономии. В 2024-м году международный коллектив ученых, исследовав данные, собранные нейтринным телескопом ANTARES за последние его 13 лет работы, также установил значительную корреляцию между потоками высокоэнергетических нейтрино и направлениями на активные ядра галактик.

Теперь ученые KM3NeT, используя новейшие технологии и методы, продолжают эти исследования, стремясь установить связь между нейтрино и механизмами ускорения частиц в космических источниках.

220 ПэВ — это огромная энергия. Рекорд энергии частиц, которого удалось достичь на Большом адронном коллайдере, более чем в 30 тысяч раз меньше. Подобную энергию получить не так-то просто — для этого должны существовать особые экстремальные условия, в которых возможно такое ускорение частиц. Чтобы выделилась энергия, которой обладает одна элементарная частица в этом ультра‑высокоэнергетическом потоке, необходимо аннигилировать больше 200 миллионов атомов водорода, превратив всю их массу в энергию.

Блазары — это особая группа активных ядер галактик (AGN), в которых узкие, сильно релятивистские джеты направлены почти прямо в сторону Земли. Именно эти объекты способны излучать огромную энергию в широком спектральном диапазоне — от радио до гамма‑лучей, а изучение вспышечных процессов в их джетах может служить ключом к пониманию ускорения космических лучей. Цель исследования, поставленная коллективом KM3NeT, состояла в том, чтобы изучить характеристики детектированного нейтрино, а также провести поиск потенциальных источников, блазаров, чья активность могла бы быть связана с данным событием.

Событие регистрации нейтрино с энергией около 220 ПэВ получило обозначение KM3‑230213A. Оно было зафиксировано детектором, расположенным у берегов Сицилии, который позволил ограничить область неопределенности направления потока частиц до углового радиуса в три градуса с доверительной вероятностью 99%. 

Чтобы разобраться, откуда могло прийти это загадочное послание, ученые проделали многоступенчатый анализ. Сначала они провели сбор многочастотных данных, используя архивные данные и новые, специально проведенные наблюдения. Были проанализированы данные в радиодиапазоне, полученные с помощью РСДБ-сетей и одиночных радиотелескопов (OVRO, РАТАН-600 и другие), а также рентгеновские (Swift‑XRT, Chandra, eROSITA), гамма- (Fermi‑LAT) и оптические данные.

Локализация KM3-230213A на звездном небе (зоны с вероятностями нахождения 68%, 90% и 99% заштрихованы тремя оттенками голубого цвета в виде концентрических кругов) вместе с другими яркими источниками. Галактическая плоскость показана пунктирной черной линией. Отмечены все яркие радиоблазары в круге ошибок направления прихода нейтрино, для которых имеются кривые блеска в радиодиапазоне по данным телескопов OVRO, РАТАН-600 и других / © https://arxiv.org/abs/2502.08484

Затем на основе методик, разработанных в предыдущих исследованиях, была составлена выборка из 17 кандидатов‑блазаров. После этого исследователи провели анализ временных корреляций — поиск связи во времени между вспышками в различных диапазонах (радио, рентген, гамма) и временем прихода нейтрино. Наиболее примечательной оказалась радио‑вспышка, зафиксированная в объекте PMN J0606‑0724, совпавшая с событием KM3‑230213A с вероятностью случайного совпадения всего лишь 0,26%.

Хотя прямая ассоциация нейтрино с каким-либо конкретным блазаром не может быть окончательно подтверждена при имеющемся на сегодняшний день объеме данных, обнаруженные корреляции — особенно в радиодиапазоне — дают важные подсказки о том, что процессы, происходящие в блазарах, могут способствовать образованию ультра‑высокоэнергетических нейтрино.

Новизна предложенного подхода заключается в комплексном использовании многочастотных данных для изучения нейтрино‑событий. Ранее исследования в этой области опирались преимущественно на отдельные диапазоны — радио, гамма или рентген. Сегодня же, благодаря синергии данных из различных спектральных областей, ученые получают возможность более точно локализовать источник нейтрино и оценить его физические параметры.

«Результаты нашей работы подчеркивают важность объединения наблюдений в различных диапазонах – от радио до гамма‑лучей — для всестороннего понимания экстремальных процессов во Вселенной, — рассказал Александр Попков, научный сотрудник лаборатории фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ. — Понимание того, как в блазарах возникают ультра‑высокоэнергетические нейтрино, может привести к пересмотру моделей ускорения космических лучей, что, в свою очередь, имеет значение для фундаментальной физики и космологии».

Важно отметить, что проводимые исследования имеют важное значение не только с точки зрения фундаментальной науки о космических объектах, но и для прикладных задач на Земле. Разработка новых методов анализа и использования данных с высокой временной разрешающей способностью способна стимулировать совершенствование нейтринных обсерваторий и телескопов будущего. Улучшенные модели могут помочь астрономам планировать целевые наблюдения в периоды вспышек, что важно для исследования динамических процессов в активных ядрах галактик. Понимание процессов, приводящих к образованию высокоэнергетических частиц, может оказаться полезным для оценки потенциального влияния космических лучей на работу спутников и космических миссий.

Российские участники исследования поддержаны Минобрнауки Росси в рамках крупного научного проекта «Изучение происхождения, источников и свойств нейтрино на Байкальском нейтринном телескопе и других установках мирового класса».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 13:28
Университет Лобачевского

Во время часовой сессии игры в популярный 3D-шутер DOOM киберпсихологи ННГУ имени Н.И. Лобачевского регистрировали сердечный ритм игроков и вели запись игрового процесса. Затем динамику очков здоровья персонажа сопоставили с ритмом сердца и типом личности игрока. Результаты исследований могут найти применение в разработке компьютерных игр, фиджитал-спорте и тренировках киберспортсменов.

24 февраля
Игорь Байдов

Китайский марсохода «Чжужун» обнаружил под марсианской поверхностью слои осадочных пород, которые образовались под воздействием волн. Робот сделал открытие в районе, где ученые предполагали наличия океана около четырех миллиардов лет назад. Полученные данные помогли исследователям понять, что на Красной планете действительно существовал огромный океан с волнами и приливами, способными формировать береговые линии.

24 февраля
Татьяна

В IV веке нашей эры в Европе появились воинственные кочевники — гунны, спровоцировав великое переселение народов. Об их происхождении нет единого мнения. Традиционно их считали потомками хунну, населявших монгольские степи. Проблема в том, что между этими культурами — временной лаг в три столетия, а археологических и письменных свидетельств не хватает, чтобы дать однозначный ответ о родстве. На помощь историкам пришли генетики.

24 февраля
Evgenia

Международная исследовательская коллаборация опровергла убеждение, что атомное ядро свинца-208 (²⁰⁸Pb) имеет идеальную сферическую форму. Это открытие ставит под сомнение фундаментальные представления о структуре ядер и имеет далеко идущие последствия для нашего понимания того, как образуются самые тяжелые элементы во Вселенной.

24 февраля
Татьяна

В IV веке нашей эры в Европе появились воинственные кочевники — гунны, спровоцировав великое переселение народов. Об их происхождении нет единого мнения. Традиционно их считали потомками хунну, населявших монгольские степи. Проблема в том, что между этими культурами — временной лаг в три столетия, а археологических и письменных свидетельств не хватает, чтобы дать однозначный ответ о родстве. На помощь историкам пришли генетики.

24 февраля
Игорь Байдов

Китайский марсохода «Чжужун» обнаружил под марсианской поверхностью слои осадочных пород, которые образовались под воздействием волн. Робот сделал открытие в районе, где ученые предполагали наличия океана около четырех миллиардов лет назад. Полученные данные помогли исследователям понять, что на Красной планете действительно существовал огромный океан с волнами и приливами, способными формировать береговые линии.

31 января
Березин Александр

В 2022-2025 годах страны Западной Европы попытались отказаться от природного газа из России. Автор новой работы показал, что получившиеся при этом результаты были во многом противоположны целям.

12 февраля
Елизавета Александрова

Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.

10 февраля
Елизавета Александрова

Астрономы обнаружили, что почти треть всех наблюдаемых галактик во Вселенной объединены в пять самых широкомасштабных структур — галактические сверхскопления. На составленной учеными трехмерной карте одно особенно выделяется своими рекордными размерами: простирается на миллиард с лишним световых лет.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно