Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые ВШЭ научили искусственный интеллект предсказывать банкротство компаний
Сотрудники Высшей школы бизнеса ВШЭ предложили новый метод предсказывать банкротство компаний на основе машинного обучения. Он позволяет использовать по максимуму информацию о финансовом состоянии фирм и показывает более высокие результаты по сравнению с классическими статистическими подходами.
Исследование опубликовано в журнале Expert Systems with Applications. Как для экономики, так и для общества крайне важно уметь оценивать финансовые риски при взаимодействии с любым бизнесом. В частности, прогнозировать банкротство компаний, которое ведет к значительным убыткам и ухудшает экономическую ситуацию в стране.
Ученые-экономисты уже давно изучают причины банкротства компаний. С одной стороны, ведутся эмпирические и теоретические исследования по изучению процессов, которые приводят к неудачам в бизнесе, для выявления проблем на ранней стадии. С другой — на основе данных об экономических показателях компаний разрабатываются методы прогнозирования проблем.
Сегодня именно прогнозирование банкротства компаний получило широкое распространение в бизнес-среде. В исследовании, опубликованном в журнале Expert Systems with Applications, профессор Высшей школы бизнеса ВШЭ Юрий Зеленков совместно со своим студентом Никитой Володарским предложил свой подход к проблеме, основанный на технологиях машинного обучения.
Предсказание банкротства тех или иных фирм относится к так называемым задачам классификации. В них на основании экономических характеристик необходимо определить, относится ли данный бизнес к одной из двух категорий: компании, которые останутся на плаву, или компании, которые обанкротятся в течение некоторого срока.
Для обучения методу используется набор исторических данных о благополучных и обанкротившихся фирмах. Искусственный интеллект тренируется на наборе признаков — показателей производительности бизнеса — и ищет сложные закономерности развития компаний и их текущего состояния. После обучения для любой новой компании метод сможет предсказать ее будущее с некоторой степенью уверенности.
Подобные задачи страдают от дисбаланса классов: статистически банкротство случается редко, поэтому в тренировочных наборах гораздо больше выживших предприятий. Согласно статистике, обычно доля банкротов не превышает 5–10 процентов в доступных данных. Методам машинного обучения, оказывается, просто недостаточно информации, чтобы понять, какие совокупности признаков приводят к будущему банкротству.
Авторы исследования построили метод, который менее чувствителен к дисбалансу в данных. В нем происходит тренировка множества отдельных алгоритмов классификации, из которых затем выбираются наиболее эффективные и комбинируются для достижения наибольшей точности предсказаний.
«Нам удалось построить быстрый алгоритм, который обучается на несбалансированных данных и показывает гораздо более высокую точность предсказаний по сравнению с традиционными методами. При этом важно, что пользователь может управлять ошибкой предсказания каждого класса на основе визуального представления.
Поскольку модель основывается исключительно на финансовых показателях компаний, ее результаты также верны и в экстремальных условиях глобальной пандемии Covid-19. В будущем интерес к использованию методов машинного обучения будет только расти, и мы считаем, что в какой-то момент они полностью заменят традиционные способы предсказания банкротства компаний.
Но стоит также отметить, что предложенный метод не сфокусирован исключительно на банкротствах, он может применяться для любой задачи классификации несбалансированных данных. В настоящее время мы планируем его дальнейшее исследование и развитие», — комментирует автор работы, профессор департамента бизнес-информатики ВШЭ Юрий Зеленков.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Может ли у искусственного интеллекта проявиться сознание? Этот вопрос интересует ученых и инженеров по всему миру. Российская компания «Яндекс» решила провести исследование, которое поможет ответить на него.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.
В 2025 году российская атомная отрасль отмечает 80-летие — от первого ядерного реактора до космических амбиций и повседневных чудес. Знаете ли вы, когда ученые признали реальность атомов, сколько известно видов радиоактивного распада или когда на полях стали выращивать мутантов?
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
