Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые ВШЭ научили искусственный интеллект предсказывать банкротство компаний
Сотрудники Высшей школы бизнеса ВШЭ предложили новый метод предсказывать банкротство компаний на основе машинного обучения. Он позволяет использовать по максимуму информацию о финансовом состоянии фирм и показывает более высокие результаты по сравнению с классическими статистическими подходами.
Исследование опубликовано в журнале Expert Systems with Applications. Как для экономики, так и для общества крайне важно уметь оценивать финансовые риски при взаимодействии с любым бизнесом. В частности, прогнозировать банкротство компаний, которое ведет к значительным убыткам и ухудшает экономическую ситуацию в стране.
Ученые-экономисты уже давно изучают причины банкротства компаний. С одной стороны, ведутся эмпирические и теоретические исследования по изучению процессов, которые приводят к неудачам в бизнесе, для выявления проблем на ранней стадии. С другой — на основе данных об экономических показателях компаний разрабатываются методы прогнозирования проблем.
Сегодня именно прогнозирование банкротства компаний получило широкое распространение в бизнес-среде. В исследовании, опубликованном в журнале Expert Systems with Applications, профессор Высшей школы бизнеса ВШЭ Юрий Зеленков совместно со своим студентом Никитой Володарским предложил свой подход к проблеме, основанный на технологиях машинного обучения.
Предсказание банкротства тех или иных фирм относится к так называемым задачам классификации. В них на основании экономических характеристик необходимо определить, относится ли данный бизнес к одной из двух категорий: компании, которые останутся на плаву, или компании, которые обанкротятся в течение некоторого срока.
Для обучения методу используется набор исторических данных о благополучных и обанкротившихся фирмах. Искусственный интеллект тренируется на наборе признаков — показателей производительности бизнеса — и ищет сложные закономерности развития компаний и их текущего состояния. После обучения для любой новой компании метод сможет предсказать ее будущее с некоторой степенью уверенности.
Подобные задачи страдают от дисбаланса классов: статистически банкротство случается редко, поэтому в тренировочных наборах гораздо больше выживших предприятий. Согласно статистике, обычно доля банкротов не превышает 5–10 процентов в доступных данных. Методам машинного обучения, оказывается, просто недостаточно информации, чтобы понять, какие совокупности признаков приводят к будущему банкротству.
Авторы исследования построили метод, который менее чувствителен к дисбалансу в данных. В нем происходит тренировка множества отдельных алгоритмов классификации, из которых затем выбираются наиболее эффективные и комбинируются для достижения наибольшей точности предсказаний.
«Нам удалось построить быстрый алгоритм, который обучается на несбалансированных данных и показывает гораздо более высокую точность предсказаний по сравнению с традиционными методами. При этом важно, что пользователь может управлять ошибкой предсказания каждого класса на основе визуального представления.
Поскольку модель основывается исключительно на финансовых показателях компаний, ее результаты также верны и в экстремальных условиях глобальной пандемии Covid-19. В будущем интерес к использованию методов машинного обучения будет только расти, и мы считаем, что в какой-то момент они полностью заменят традиционные способы предсказания банкротства компаний.
Но стоит также отметить, что предложенный метод не сфокусирован исключительно на банкротствах, он может применяться для любой задачи классификации несбалансированных данных. В настоящее время мы планируем его дальнейшее исследование и развитие», — комментирует автор работы, профессор департамента бизнес-информатики ВШЭ Юрий Зеленков.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Ученые разработали штамм цианобактерии, способный поглощать в три раза больше фосфора из сточных вод
Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.
Исследователи из Института искусственного интеллекта Московского государственного университета и «Яндекса» создали LORuGEC — первый открытый набор данных с примерами ошибок по сложным правилам русского языка. Они также разработали метод, помогающий обучить ИИ исправлять грамматические, пунктуационные и орфографические ошибки при генерации текстов. «Яндекс» рассказал о разработках на полях Конгресса молодых ученых.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
