• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
16.09.2020
ФизТех
1
2 199

Разработан нанолазер для микропроцессоров будущего

4.8

Физики из МФТИ и Королевского колледжа Лондона устранили ограничение на пути к созданию инжекционных нанолазеров для интегральных схем. Предложенный исследователями подход дает возможность производить лазеры, размеры которых не только в сотни раз меньше толщины человеческого волоса, но и меньше длины излучаемого ими света. Они позволят наладить сверхбыструю передачу информации в многоядерных микропроцессорах ближайшего будущего.

Нанолазер на поверхностных плазмон-поляритонах с электрической накачкой / ©Дмитрий Федянин / Пресс-служба МФТИ / Автор: Regulus Tremerus

Статья опубликована в журнале Nanophotonics. Использование световых сигналов уже привело к одной революции, когда в 1980-е годы оптоволоконные линии пришли на смену медным кабелям. Это на много порядков увеличило скорость передачи информации. Свет оказался гораздо эффективнее электрического сигнала по той причине, что он представляет собой электромагнитные волны с частотой в несколько сотен терагерц. Такая высокая частота света позволяет передавать терабиты информации в секунду.

Весь современный интернет держится на оптоволоконных линиях, но это далеко не все, на что способен свет. Он мог бы работать даже внутри процессора — будь то компьютер, смартфон или иное устройство. Для этого нужно соединить оперирующие электрическими сигналами компоненты — например, ядра процессора — оптическими коммуникационными линиями, работающими исключительно со светом. Это позволит почти мгновенно передавать большие объемы информации внутри чипа.

«Устранение ограничения на передачу информации поможет дальше наращивать производительность процессора прямо пропорционально количеству ядер. Можно будет создать 1000-ядерный процессор, который практически в 100 раз быстрее 10-ядерного. Это, в свою очередь, откроет дорогу к настоящим суперкомпьютерам на одном чипе. Именно в этом направлении движутся гиганты полупроводниковой индустрии, такие как IBM, HP, Intel, Oracle, и другие», — говорит ведущий автор исследования, старший научный сотрудник Центра фотоники и двумерных материалов МФТИ Дмитрий Федянин.

Трудность заключается в том, что соединить оптику и электронику требуется на микроуровне. Для этого размеры оптических компонентов должны не превышать сотен нанометров, что в сто раз меньше толщины человеческого волоса. Встроенные в чипы лазеры, без которых преобразование информации из электрической формы в оптическую попросту невозможно, должны быть столь же миниатюрны.

(а) Схема кольцевого резонатора источника когерентных поверхностных плазмон-поляритонов (ППП) с электрическим приводом на основе Т-образного плазмонного волновода. Смоделированная напряженность электрического поля ( | E | 2 ) распределение режима SPP накладывается на геометрию. (б) Поперечное сечение Т-образного плазмонного волновода. Также указаны соответствующие геометрические параметры устройства: R – радиус кольца, H и w – высота и ширина волновода соответственно, s – толщина слоя инжекции электронов, h – высота активная область. (в) Вольт -амперные характеристики туннельного контакта Шоттки Au / n + -InAs 0,4 P 0,6 при комнатной и низких температурах. На вставке: схематическое изображение барьера для электронов на границе раздела металл/полупроводник / ©www.degruyter.com

Однако свет — это электромагнитные волны, длина которых составляет сотни нанометров. А фотон, квант света, согласно квантовому принципу неопределенности, занимает определенный конечный объем в пространстве. Этот объем не может быть меньше кубика, ребро которого примерно равно длине волны света, поэтому грубо можно сказать, что фотоны в очень маленьком лазере просто не поместятся. Впрочем, такое ограничение на размер оптических устройств, дифракционный предел — не абсолютное препятствие для оптоэлектроники. Решить проблему можно переходом от фотонов к поверхностным плазмон-поляритонам.

Поверхностные плазмон-поляритоны — это коллективные колебания электронов, которые находятся на границе металла и взаимодействуют с окружающим их электромагнитным полем. Подходят, однако, не все металлы, а лишь так называемые плазмонные: золото, серебро, медь и алюминий. Поверхностные плазмон-поляритоны так же, как и фотоны являются электромагнитными волнами, но при той же частоте, что и фотоны они гораздо лучше локализованы в пространстве, то есть занимают меньший объем. Замена фотонов на поверхностные плазмон-поляритоны дает возможность сжать свет и тем самым преодолеть дифракционный предел.

Современные технологии уже позволяют создавать действительно наноразмерные плазмонные лазеры. Однако их требуется освещать другим — большим и мощным — лазером. Такая технология удобна для экспериментов в лаборатории, но не более того. По-настоящему массовые и пригодные для реальных задач микросхемы должны содержать сотни нанолазеров и работать на обычных печатных платах. Для практического применения нанолазеру нужно работать «от батарейки», или, как говорят ученые, от электрической накачки.

Такие нанолазеры называются инжекционными. Однако пока достижения в этом направлении ограничивались лишь образцами, работающими при криогенных температурах. Это не подходит для большинства практических задач: устройство, которое не функционирует без жидкого азота, не слишком удобно. 
Физики из МФТИ и Королевского колледжа Лондона предложили отказаться от традиционных схем электрической накачки нанолазеров.

Дело в том, что ранее применявшиеся схемы накачки требовали наличия омического контакта из таких металлов, как титан или хром, причем контакт этот был частью резонатора — объема, в котором и возникает излучение. Но титан и хром сильно поглощают свет и инфракрасное излучение, а для резонатора это плохо — он теряет свои свойства, или, как говорят физики, снижается его добротность. Таким лазерам требовался большой ток накачки — и они перегревались. Поэтому их приходилось охлаждать до криогенных температур со всеми вытекающими отсюда неудобствами.

Новая схема электрической накачки на основе двойной гетероструктуры с туннельным контактом Шоттки позволяет полностью отказаться от омического контакта из сильнопоглощающих материалов. Электрическая накачка в новой схеме осуществляется непосредственно через границу «плазмонный металл/полупроводник — ту, по которой распространяются поверхностные плазмон-поляритоны.

«Благодаря нашей схеме накачки инжекционный лазер может быть уменьшен до действительных наноразмеров, сохраняя возможность работы при комнатной температуре. При этом, в отличие от других инжекционных нанолазеров, излучение эффективно выводится в фотонный или плазмонный волновод, что позволяет использовать нанолазер в интегральных схемах», — говорит Дмитрий Федянин.

В предложенном исследователями плазмонном нанолазере все линейные размеры не превышают длины волны излучаемого им света. А объем, занимаемый плазмон-поляритонами в нанолазере, в 30 раз меньше кубика, ребро которого равно длине волны света. Исследователи отмечают, что их плазмонный нанолазер можно уменьшить еще в несколько раз. Это сделает его характеристики еще более впечатляющими — правда, ценой потери возможности эффективно выводить излучение в волновод. Нанолазер меньших размеров пригодится в химических сенсорах и биосенсорах, ближнепольной оптической спектроскопии или оптогенетике, но окажется малопригодным для интегральных оптических схем на чипе.

Несмотря на наноразмеры, расчетная выходная мощность нанолазера превышает 100 микроватт, что сопоставимо с мощностью фотонных лазеров гораздо большего размера. Каждый нанолазер сможет быть использован для передачи сотен гигабит информации в секунду, что позволит устранить одно из наиболее сложных ограничений на пути к еще более производительным компьютерам.

Разумеется, под компьютерами здесь следует понимать любую вычислительную систему, от которой ожидается большая производительность: это и процессоры для суперкомпьютеров, и чипы для видеокарт, и, возможно, какие-то гаджеты, которые пока даже не изобретены. Исследование поддержано грантом Российского фонда фундаментальных исследований. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
2 часа назад
Мария Азарова

Могут ли истории о далеких галактиках и технологиях будущего объединить человечество? Согласно новому исследованию ученых из Китая, научная фантастика, вызывающая чувство благоговения, усиливает ощущение глобальной взаимосвязи между людьми.

Вчера, 11:42
Андрей

Американские зоологи задались вопросом: как можно улучшить условия содержания птиц в неволе? Они добавили в лабораторные клетки подстилку из искусственной травы, чтобы птица могла питаться в знакомой среде, а не из стандартной миски. Опыты проводили на воробьях — исследователи несколько недель замеряли их реакцию на стресс. Результаты показали, что искусственная трава может улучшить состояние птиц в неволе, но переселять их потом не стоит.

1 час назад
Игорь Байдов

В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.

27 марта
Сколтех

Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.

25 марта
ТюмГУ

Специалисты Школы естественных наук ТюмГУ исследовали особенности накопления меди и цинка в овсе при искусственном загрязнении почв. Ученые установили, что корневая система растения служит индикатором загрязнения, тогда как надземная часть действует как барьер для меди и одновременно как индикатор накопления цинка в органогенных почвах.

24 марта
РТУ МИРЭА

В РТУ МИРЭА разработали систему контроля и управления доступом (СКУД) на основе нейронных сетей для распознавания лиц. Эта технология предназначена для повышения безопасности на объектах с повышенными рисками, таких как критическая информационная инфраструктура в сферах энергетики, транспорта, здравоохранения, связи, финансов и промышленности, от которых зависит функционирование целых отраслей и страны.

15 марта
Юлия Трепалина

Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).

6 марта
Юлия Трепалина

В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.

18 марта
Илья

Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.

[miniorange_social_login]

Комментарии

1 Комментарий
-
0
+
Вот это дело. А то с этими кварками запутанными все мозги позаплели. Куда их применять, непонятно. А развитие компов дальше на основе света - похоже, настоящий путь.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно