Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Создан новый алгоритм, ускоряющий машинное обучение в распределенных системах без центрального сервера
Исследователи из России вместе с их американским коллегой предложили новый, полностью децентрализованный алгоритм оптимизации. Он позволяет эффективно решать различные задачи, работая без центрального сервера и автоматически настраиваясь без предварительной настройки параметров.
Результаты исследования опубликованы в материалах конференции NeurIPS 2024. В современном мире множество задач решается в распределенных системах, где множество компьютеров (агентов) работают совместно. Традиционно такие системы используют центральный сервер для координации вычислений, что создает узкие места и проблемы с масштабируемостью.
Существующие децентрализованные алгоритмы оптимизации страдают от серьезного недостатка: для их эффективной работы необходимо точно знать параметры как самой задачи оптимизации (например, «константу Липшица» градиента, характеризующую крутизну функции потерь), так и топологии сети, по которой общаются агенты (степень их взаимосвязи). В реальных распределенных системах агенты обычно не имеют доступа к этой глобальной информации, что заставляет использовать очень консервативные настройки параметров и, как следствие, приводит к медленной сходимости или даже расходимости алгоритма. Это похоже на то, как если бы строители пытались построить дом, не зная ни плана здания, ни того, где находится строительный материал.
Однако новый подход, представленный в исследовании, решает эту проблему, предлагая полностью децентрализованный алгоритм оптимизации, работающий без центрального сервера и автоматически настраивающийся без необходимости в предварительной настройке параметров.
Он основан на методе «разбиения операторов» и использовании новой переменной метрики. Это позволяет каждому агенту самостоятельно определять оптимальный размер шага в процессе обучения, используя локальную информацию. Это подобно тому, как опытный строитель, оценивая ситуацию на месте, решает, какой инструмент и как использовать.
Вместо того, чтобы опираться на предварительно заданные параметры, алгоритм постоянно адаптируется к местным особенностям функции потерь. Каждый агент выполняет локальный поиск оптимального шага, не требуя обмена информацией со всеми остальными агентами в сети. Этот «локальный» подход значительно ускоряет вычисления и делает алгоритм более масштабируемым.
Теоретический анализ показал, что новый алгоритм обеспечивает линейную сходимость – это значит, что скорость приближения к решению остается высокой даже на поздних этапах вычислений. Скорость сходимости зависит от двух факторов: сложности самой задачи оптимизации и «связности» сети, то есть того, насколько хорошо агенты обмениваются информацией между собой. В хорошо связанных сетях скорость сходимости приближается к скорости централизованного алгоритма. Это как если бы все строители работали на одном участке, а не по всему городу.
Авторы предложили две модификации своего алгоритма. Оба алгоритма являются децентрализованными и используют локальный линейный поиск для адаптивного выбора размера шага каждым агентом индивидуально. Однако механизм согласования этих локальных размеров шага различен. Первый алгоритм использует механизм поиска глобального минимума. Каждый агент вычисляет свой локальный оптимальный размер шага, а затем все агенты обмениваются этой информацией, и в качестве глобального размера шага выбирается минимальное значение среди всех агентов, что требует коммуникации между всеми агентами в сети. Второй алгоритм основан на использовании только локального минимума. Каждый агент вычисляет свой локальный оптимальный размер шага, а затем выбирает в качестве своего размера шага минимум среди своих непосредственных соседей, включая самого себя. Это требует коммуникации только с соседями в сети.
В итоге первый алгоритм обеспечивает более быструю сходимость за счет использования глобальной информации о размере шага, но требует большей коммуникации между агентами. Второй алгоритм, в свою очередь, менее требователен к коммуникации, обмениваясь информацией только с ближайшими соседями, но за счет этого может демонстрировать несколько более медленную сходимость (хотя авторы показывают, что разница не слишком велика). Выбор между алгоритмами зависит от компромисса между скоростью сходимости и объемом коммуникации в конкретной сети. Второй алгоритм особенно полезен для сетей с ограниченной пропускной способностью или высокой стоимостью коммуникации.
Численные эксперименты подтвердили теоретические выводы о том, что новые алгоритмы значительно превосходит по скорости существующие децентрализованные алгоритмы. Эта разница особенно заметна при решении сложных задач с большим количеством данных и при работе в слабо связанных сетях. Алгоритм был успешно протестирован на задаче гребневой регрессии (ridge regression) — распространенной задаче машинного обучения.
«Наш подход использует метод разбиения операторов с новой переменной метрикой, что позволяет использовать локальный поиск по линиям с обратным шагом (backtracking line-search) для адаптивного выбора размера шага без глобальной информации или обширной коммуникации, — рассказал Александр Гасников, заведующий лабораторией математических методов оптимизации МФТИ. — Это приводит к благоприятным гарантиям сходимости и зависимости от параметров оптимизации и сети по сравнению с существующими неадаптивными методами. Примечательно, что новый метод является первым адаптивным децентрализованным алгоритмом, который достигает линейной сходимости для сильно выпуклых и гладких функций».
Дальнейшие исследования ученых могут быть направлены на адаптацию предложенных методов к стохастических задачам, расширение его на более сложные типы сетевых топологий и обмен данными, исследование возможностей использования более сложных методов оптимизации в рамках предложенного подхода. Разработка и улучшение новых алгоритмов децентрализованного машинного обучения является важным шагом к созданию более эффективных и масштабируемых систем машинного обучения в распределенных средах.
В поиске сигналов от внеземных цивилизаций ученые решили сосредоточиться не на целенаправленных посланиях человечеству, а на случайных «утечках информации» из межпланетного пространства гипотетической обитаемой системы. По расчетам, в определенные моменты до нас могут доходить сигналы внеземной космической связи. Кстати, благодаря «общению» Земли с марсианскими и другими зондами мы тоже постоянно невольно сообщаем о себе в глубокий космос.
Модель, представленная учеными из коллаборации DESI и Мичиганского университета (США), может перевернуть представления о происхождении темной энергии. Авторы нового исследования полагают, что черные дыры, поглощая вещество, постепенно преобразовывают его в энергию, гипотетически ответственную за расширение Вселенной.
Устройство Вселенной обычно описывают с помощью уравнений общей теории относительности Эйнштейна. Но чтобы понять, как гравитация ведет себя в экстремальных условиях — например, при рождении черных дыр или в момент гипотетической инфляции — классического подхода недостаточно. Сделать это можно, как показали авторы нового исследования, обратившись к методу численной относительности.
К 2025 году около 30 стран приняли программы по развитию водородной энергетики, а совокупный объем инвестиций в эту область превысил 150 миллиардов долларов. Эксперты полагают, что замена дизельных авто на водородные снизит выбросы на 80-90%, а водородные самолеты способны уменьшить углеродный след на 50-75%. Но при использовании водорода в двигателях внутреннего или внешнего сгорания, происходит взаимодействие с металлом, что наиболее опасно при высоких температурах. Это может вызвать их разрушение, в результате чего возникает риск пожара или взрыва с тяжелыми последствиями для пассажиров. Ученые Пермского Политеха впервые выяснили, как водород влияет на металлы в условиях экстремальных температур (800 градусов и выше), в которых работают двигатели самолетов и машин. Это продвинет авиационную, машиностроительную и нефтегазовую отрасли в безопасном использовании водорода в качестве источника энергии.
Ученые обнаружили косвенные доказательства существования мира размером с Землю за орбитой Нептуна. Эта гипотетическая планета отличается от предполагаемой Девятой планеты не только размером, но и гравитационным влиянием на другие объекты.
Большие кошки (Pantherinae) обычно охотятся на животных своего или меньшего размера. У снежных барсов, как выяснилось, другие предпочтения. Новое исследование показало, что ирбисы чаще нападают на взрослых горных козлов, которые как минимум вдвое превосходят хищников в весе. Ученые объяснили, с чем может быть связан такой выбор добычи.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Возраст находок — около 5500 лет, они лежат во множестве круглых ям, чьи стены укреплены кирпичом. Среди обнаруженных орудий из кремня есть и сотни неиспользованных, которые могут быть ритуальным подношением богам.
Гостингом (от английского «призрак») называют ситуацию, когда человек прекращает общение или отношения, «пропадая с радаров» без объяснения причин. Исследователи из США сымитировали такое поведение, а затем проанализировали реакцию людей на него.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии