Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые спрогнозировали розничные продажи с помощью нового алгоритма
В современной экономике, где объемы продаж растут в геометрической прогрессии, умение предвидеть, какие товары будут пользоваться спросом, можно назвать залогом успеха для любого бизнеса. Ученые МТУСИ предложили решение для такого прогноза.
Как правило, данные о продажах формируют непрерывный поток информации в датасет, где каждая группа «товар-магазин» представляет собой обособленный временной ряд, который по отдельности невозможно проанализировать вручную и представить графически. Традиционные статистические методы не справляются с такими объемами информации и сложными взаимосвязями между различными факторами, влияющими на спрос. Решением проблемы может стать машинное обучение, однако его эффективность напрямую зависит от скорости и точности вычислений, объема данных и доступных вычислительных ресурсов.
Сотрудники кафедры «Математическая кибернетика и информационные технологии» (МКиИТ) факультета «Информационные технологии» МТУСИ — доктор технических наук профессор Юрий Леохин и кандидат технических наук, доцент Тимур Фатхулин — провели масштабное исследование, посвященное поиску оптимального решения для прогнозирования спроса на отдельные виды товаров.
В рамках исследования были отобраны и протестированы различные модели машинного обучения, включая Random Forest, Linear Regression, XGBoost, LightGBM, CatBoost и LSTM. Для оценки эффективности каждой модели использовались три ключевые метрики: RMSE (среднеквадратичная ошибка), MAE (средняя абсолютная ошибка) и R2 (коэффициент детерминации). Для обучения и тестирования моделей использовались реальные данные о продажах.
«Данные метрики являются универсальными, а их использование вместе позволяет более полно оценить поведение моделей, что было определено в ходе анализа рассматриваемой предметной области. Далее мы отобрали данные из открытых источников, чтобы разработать универсальную модель, которая будет эффективно работать в разных условиях и с отдельными типами товаров. Мы загрузили в модели датасет с данными о продажах фирмы «1С» (16 249 записей из 67 товарных групп в 13 магазинах за 34 месяца), розничной сети Эквадора (24 090 записей, включающих 33 товарных групп за 730 дней) и розничных магазинов в различных регионах страны (15 800 записей о четырех видах товара в пяти магазинах за 790 дней)», – поделился особенностями исследования профессор, доктор технических наук, Юрий Леохин.
Результаты исследования показали, что наиболее эффективной моделью для прогнозирования спроса является XGBoost – модель градиентного бустинга.
«XGBoost – это универсальная и мощная модель, ориентированная на высокую производительность, масштабируемость и точность. Она продемонстрировала наивысшую точность и стабильность прогнозов по сравнению с другими рассмотренными моделями. Тщательная настройка параметров и правильный выбор признаков в данных позволят в будущем еще больше повысить точность и эффективность данной модели», – пояснил доцент, кандидат технических наук Тимур Фатхулин.
В дальнейшем исследователи планируют продолжить работу над совершенствованием модели, уделяя особое внимание настройке параметров и подбору оптимальных признаков в данных.
Исследование, проведенное учеными МТУСИ, открывает новые горизонты для создания интеллектуальных систем, способных с высокой точностью прогнозировать спрос в различных отраслях: от розничной торговли до крупного производства.
Многие принимают добавки с витамином D для поддержания здоровья костей и укрепления иммунитета. Однако исследование недавно показало, что употребление одной из форм — эргокальциферола (D2) — может быть неэффективным для устранения дефицита этого витамина.
В современном мире у каждого из нас в кармане находится мощный компьютер, подключенный к глобальной сети. Но вместе с невиданными возможностями он принес и новые угрозы, которые стали настолько изощренными, что атакуют уже не устройства, а наше сознание. Почему даже образованные и осторожные люди порой попадаются на крючок фишинговых атак? Ответ на этот вопрос лежит в области работы нашего собственного мозга. Об этом рассказала Елена Шпагина, кандидат психологических наук, доцент кафедры гуманитарных и социальных наук Института технологий управления РТУ МИРЭА.
Свайные фундаменты — оптимальное решение для многих типов грунтов (слабых, болотистых), где классические типы оснований не справляются. Их широко используют в регионах с сезонным промерзанием почвы из-за опасного явления — морозного пучения. Такой эффект приводит к постепенному выдавливанию опор и может вызвать деформацию и разрушение конструкций. Существующие способы их защиты не всегда эффективны: утепление не спасает в морозы, дренаж не снимает давление льда, а замена грунта слишком дорога. Ученые Пермского Политеха разработали коническую сваю, которая снижает объем материала, необходимого для изготовления на 40%, и превосходит по надежности традиционные цилиндрические аналоги на 30%.
По общепринятой и незыблемой до сих пор версии, Уран и Нептун — ледяные гиганты: основную часть их массы составляют летучие вещества в особом состоянии «горячих льдов». Теперь у планетологов появилась альтернативная гипотеза: они подозревают, что никаких «горячих льдов» внутри них может не быть, а вместо этого есть крупные каменные ядра, окруженные легкой газовой оболочкой.
Инженеры Unitsky String Technologies Inc. разработали тяговые накопители энергии, которых хватает рельсовому беспилотнику для перевозки морских контейнеров.
Концептуальный дизайнер и художник Вадим Кашин создает научно-фантастические произведения, в которых детально проработанные машины и роботы неотделимы от ландшафта и архитектуры. Кашин работает в жанре, который он сам называет AbstractDiving.
Посадка, включая выгорание куска степи, прошла штатно, но часть грызунов на борту погибли. Правда, погубила их не повышенная космическая радиация полярной орбиты, влияние которой на млекопитающих планировали выявить в миссии, а более банальные причины.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии