Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые спрогнозировали розничные продажи с помощью нового алгоритма
В современной экономике, где объемы продаж растут в геометрической прогрессии, умение предвидеть, какие товары будут пользоваться спросом, можно назвать залогом успеха для любого бизнеса. Ученые МТУСИ предложили решение для такого прогноза.
Как правило, данные о продажах формируют непрерывный поток информации в датасет, где каждая группа «товар-магазин» представляет собой обособленный временной ряд, который по отдельности невозможно проанализировать вручную и представить графически. Традиционные статистические методы не справляются с такими объемами информации и сложными взаимосвязями между различными факторами, влияющими на спрос. Решением проблемы может стать машинное обучение, однако его эффективность напрямую зависит от скорости и точности вычислений, объема данных и доступных вычислительных ресурсов.
Сотрудники кафедры «Математическая кибернетика и информационные технологии» (МКиИТ) факультета «Информационные технологии» МТУСИ — доктор технических наук профессор Юрий Леохин и кандидат технических наук, доцент Тимур Фатхулин — провели масштабное исследование, посвященное поиску оптимального решения для прогнозирования спроса на отдельные виды товаров.
В рамках исследования были отобраны и протестированы различные модели машинного обучения, включая Random Forest, Linear Regression, XGBoost, LightGBM, CatBoost и LSTM. Для оценки эффективности каждой модели использовались три ключевые метрики: RMSE (среднеквадратичная ошибка), MAE (средняя абсолютная ошибка) и R2 (коэффициент детерминации). Для обучения и тестирования моделей использовались реальные данные о продажах.
«Данные метрики являются универсальными, а их использование вместе позволяет более полно оценить поведение моделей, что было определено в ходе анализа рассматриваемой предметной области. Далее мы отобрали данные из открытых источников, чтобы разработать универсальную модель, которая будет эффективно работать в разных условиях и с отдельными типами товаров. Мы загрузили в модели датасет с данными о продажах фирмы «1С» (16 249 записей из 67 товарных групп в 13 магазинах за 34 месяца), розничной сети Эквадора (24 090 записей, включающих 33 товарных групп за 730 дней) и розничных магазинов в различных регионах страны (15 800 записей о четырех видах товара в пяти магазинах за 790 дней)», – поделился особенностями исследования профессор, доктор технических наук, Юрий Леохин.
Результаты исследования показали, что наиболее эффективной моделью для прогнозирования спроса является XGBoost – модель градиентного бустинга.
«XGBoost – это универсальная и мощная модель, ориентированная на высокую производительность, масштабируемость и точность. Она продемонстрировала наивысшую точность и стабильность прогнозов по сравнению с другими рассмотренными моделями. Тщательная настройка параметров и правильный выбор признаков в данных позволят в будущем еще больше повысить точность и эффективность данной модели», – пояснил доцент, кандидат технических наук Тимур Фатхулин.
В дальнейшем исследователи планируют продолжить работу над совершенствованием модели, уделяя особое внимание настройке параметров и подбору оптимальных признаков в данных.
Исследование, проведенное учеными МТУСИ, открывает новые горизонты для создания интеллектуальных систем, способных с высокой точностью прогнозировать спрос в различных отраслях: от розничной торговли до крупного производства.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Большинство известных экзопланет в зоне потенциальной обитаемости — газовые гиганты, но ученые не спешат вычеркивать их из списка интересных для поиска внеземной жизни: у них могут быть каменистые луны с собственной атмосферой и гидросферой.
Когда начинается лесной пожар, большинство животных спасается бегством. Но у жуков-долгоносиков другой план: они пережидают стихию в эпицентре событий, а именно в специальных «огнеупорных комнатах» на растениях, которые для них создает природа. Это выяснили ученые, изучив пострадавшую от огня растительность в бразильских саваннах.
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Город изменил образ жизни диких животных и вынудил их приспосабливаться. Американский исследователь, разъезжая на своей машине, заметил необычное охотничье поведение ястребов Купера — некоторые из них перелетают в город. Несколько часов наблюдений показали: хищник, по-видимому, научился мониторить автомобильный трафик и распознавать смену сигналов светофора, выбирая лучший момент для охоты на других городских птиц.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Да, с волосами и люком все так. У космонавта Суниты Уильямс волосы на МКС плавали свободно, а у Кэти Пэрри и прочих в полете 14 апреля 2025 года — нет. Но это не значит, что суборбитального космического полета первого чисто женского экипажа не было или что он был инсценировкой. Причем, в общем-то, чтобы понять это, даже не нужно обладать специальными знаниями.
Мощнейшее отключение электроэнергии за последние 20 лет истории Европы случилось уже неделю назад, а испанские власти пока так и не объявили о его причинах. Это логично: как мы покажем ниже, ответ на вопрос, кто виноват, получится очень неполиткорректным. И, более того, противоречащим линии правящей в Испании партии. Но мы живем за тысячи километров от нее, поэтому можем себе позволить аполитичный анализ случившегося. Так что же произошло на самом деле и каковы наши шансы увидеть подобное у себя дома?
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии