Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В СПбПУ повысили точность прогнозирования последствий взрывных работ для горнодобывающей промышленности
Международная научная группа, в состав которой вошел исследователь Научного центра мирового уровня «Передовые цифровые технологии» Санкт-Петербургского политехнического университета Петра Великого, разработала инновационный метод прогнозирования последствий вибраций грунта при взрывных работах. Новый метод значительно повышает точность прогноза.
Результаты исследования опубликованы в авторитетном научном журнале Scientific Reports – Nature. Авторы исследования: Сабри Моханад Муаяд Сабри (Санкт-Петербургский политехнический университет Петра Великого), Шахаб Хоссейни (университет Тарбиат Модарес, Иран,) Рашед Пурмирзай (Технологический университет Урмии, Иран), Даниал Джахед Армагани (Технологический университет Малайзии).
Управляемые взрывы широко применяются в горнодобывающей промышленности (в том числе, нефтяной и алмазодобывающей) и гражданском строительстве, так как являются наиболее эффективным методом перемещения и разрушения горных пород. Однако такие взрывы имеют ряд негативных воздействий на окружающую среду, наиболее неблагоприятными из которых являются ударная волна, избыточное давление воздуха, вибрация грунта и обвалы горных выработок. Соответственно, более точное прогнозирование возможных последствий взрывных работ является неотъемлемым элементом обеспечения безопасности их проведения.
Точным показателем оценки вибраций грунта, вызванными взрывной волной в открытых шахтах, является показатель пикового ускорения грунта (PPV). Ранее уровень вибрации, вызванный взрывной волной, оценивали при помощи эмпирических моделей. Однако точность эмпирических прогнозных моделей низка. Поэтому исследователи международной группы применили для построения прогнозной модели мягкие вычисления (Soft Computing) и искусственный интеллект.
Для своего исследования они использовали ансамбль методов машинного обучения, включая нейронные сети и алгоритм градиентного бустинга (последовательного построения ансамбля моделей).
Сочетание нескольких нейронных сетей и создание ансамблевой системы снижает вероятность получения некорректных результатов и повышает точность и возможности обобщения. В качестве объекта для построения имитационной модели исследования был использован Ангуранский свинцово-цинковый карьер, расположенный в Иране, — один из крупнейших на Ближнем Востоке, годовая добыча которого составляет 1,2 миллионов тонн.
В своей работе исследователи рассмотрели семь параметров схемы взрывных работ, которые используются в качестве входных данных для моделей: количество взрывных скважин, глубину скважины, нагрузку, расстояние, пороховой коэффициент, задержки подрыва заряда, расстояние между установленными сейсмографами и взрывной стенд. Всего было смоделировано 162 различных подрыва и измерены параметры эффективности взрывных работ. В результате применения инновационных технологий искусственного интеллекта точность прогноза достигла 99,7 процента, что значительно повысило точность прогнозирования PPV по сравнению с лучшими индивидуальными моделями.
«Наша работа призвана решить актуальную проблему в горнодобывающей промышленности – управление взрывами и минимизация их воздействия на окружающую среду и рабочих. Использованные нами методы прогнозирования взрывного воздействия на грунт улучшают эффективность и повышает безопасность горнодобычи. Публикация статьи в столь авторитетном журнале, как в Scientific Reports-Nature, подчеркивает важность внедрения передовых методов в промышленность и их роль в снижении негативного воздействия на окружающий нас мир», – прокомментировал значимость проведенного исследования ведущий научный сотрудник Научного центра мирового уровня «Передовые цифровые технологии» Санкт-Петербургского политехнического университета Петра Великого кандидата технических наук Сабри Моханад Муаяд Сабри.
Далее исследователи нацелены на разработку более продвинутых ансамблевых моделей, использующих новейшие алгоритмы машинного обучения и гибридные подходы для повышения точности прогнозирования максимальной скорости частиц (PPV). Кроме того, эти исследования включают методы для мониторинга PPV в реальном времени, что позволит предпринимать проактивные меры по минимизации воздействия вибрации на близлежащие конструкции.
Изучив поведение 69 видов птиц в разных областях Западных Гат (Индия), международная исследовательская группа наконец объяснила, почему территориальные и всеядные птицы чаще других поют по утрам.
Среди ныне живущих морских обитателей осталось всего несколько так называемых «живых» ископаемых вроде латимерии или мечехвоста. Остальных мы знаем по уцелевшим остаткам. Новый вид древней рыбы обнаружили палеонтологи в девонском песчанике Канадской Арктики. Судя по найденным зубам и челюстям, рыба была в разы меньше своих родственников, а значит, могла жить в реках, что необычно для этих существ.
Наблюдая ранние этапы рождения землеподобных миров, астрономы приблизились к решению «метрового барьера» — проблемы роста пылевых зерен до размеров, необходимых для формирования планет.
Изучив поведение 69 видов птиц в разных областях Западных Гат (Индия), международная исследовательская группа наконец объяснила, почему территориальные и всеядные птицы чаще других поют по утрам.
Среди ныне живущих морских обитателей осталось всего несколько так называемых «живых» ископаемых вроде латимерии или мечехвоста. Остальных мы знаем по уцелевшим остаткам. Новый вид древней рыбы обнаружили палеонтологи в девонском песчанике Канадской Арктики. Судя по найденным зубам и челюстям, рыба была в разы меньше своих родственников, а значит, могла жить в реках, что необычно для этих существ.
Наблюдая ранние этапы рождения землеподобных миров, астрономы приблизились к решению «метрового барьера» — проблемы роста пылевых зерен до размеров, необходимых для формирования планет.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.
Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии