Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Новый алгоритм научит весы и кассы самообслуживания быстро распознавать товары
Коллектив ученых из Сколтеха и других организаций предложил новый быстрый способ распознавания товаров на развес в магазине. В отличие от существующих систем, новая разработка ускорит обучение нейронной сети, когда в магазин привезут новые виды товаров.
Исследование опубликовано в журнале IEEE Access. В магазинах продолжают внедрять технологии, которые помогают упростить работу персонала и ускорить процесс взвешивания товаров и их оплаты. В одних магазинах покупатели, запомнив код, сами взвешивают товар на весах в зале, а в других это делают кассиры, которые определяют сорт овощей или фруктов на вид или спрашивают об этом самого покупателя. На кассах самообслуживания со встроенными весами покупателю также нужно запоминать все коды, а проконтролировать, правильно ли покупатель взвешивает товар, сложно. Исследователи из Сколтеха предлагают упростить этот процесс с помощью системы компьютерного зрения.
По словам ученых, у существующих инструментов есть ряд недостатков: «Сложность в том, что в магазинах много визуально похожих сортов фруктов или овощей, часто появляются новые. Классические системы компьютерного зрения нужно переобучать каждый раз, когда появляется новый сорт. Это долго, поскольку нужно собирать много данных о нём, потом вручную размечать их», — объясняет первый автор работы, инженер-программист и аспирант Центра технологий искусственного интеллекта в Сколтехе Сергей Нестерук.

Разработанный подход PseudoAugment позволяет настраивать нейронную сеть для работы с новыми классами без длительного процесса сбора и разметки данных. Систему можно настроить даже до того, как новые сорта окажутся на полке магазина.
«Ящик с новым сортом можно поставить под камеру и сфотографировать. Далее, используя всего лишь несколько фотографий, алгоритм без ручной разметки извлекает отдельные объекты, потом мы аугментируем (дополняем) изображения, на основе которых можно дообучать нейронную сеть. Мы увидели, что при добавлении новых классов деградация качества распознавания гораздо меньше, чем при обучении без аугментации. Когда будет добавляться много классов, деградация качества всё равно начнётся, но систему можно переобучать всего раз в несколько недель. Самое главное, что она сможет работать сразу, как только в магазине появится новый продукт», — продолжает Сергей Нестерук.

Аугментация изображений подразумевает их дополнение синтезированными изображениями, то есть визуальную трансформацию исходных данных. К таким трансформациям относится, например, переворачивание изображений, изменение их яркости, добавление шума и так далее. С помощью аугментации повышается разнообразие данных, а сама модель становится более надежной. Работа, по словам ученых, вносит вклад в активное развитие датацентрического подхода, когда исследователи работают над улучшением данных и применяют их в уже готовых моделях. Сфера применения алгоритма не ограничивается супермаркетами. Его можно использовать для обучения распознавания однородных объектов, например, на конвейерах для сортировки семян или твердых бытовых отходов.
Больше трети населения мира близоруки, а еще в 2000 году эта доля была в 1,5 раза ниже. Причины массового ухудшения зрения огромного числа людей активно обсуждаются учеными. Авторы новой работы считают, что прежние подходы боролись с проблемой не с того конца.
Исследователи смогли построить систему, использующую фемтосекундные лазеры и недорогое боросиликатное стекло для плотного хранения данных. Специалисты ожидают, что их технология сохранит данные читаемыми на 10 000 лет.
Польские ученые разрешили многолетний спор о расходившихся почти на столетие результатах двух методов датировки захоронения женщины римского железного века, которую называют «принцессой из Багича». Точку в этом вопросе позволил поставить дендрохронологический анализ ее деревянного гроба.
Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.
Пройдя перигелий 30 октября 2025 года — ближайшую к Солнцу точку на своей траектории, — 3I/ATLAS буквально взорвалась активностью: объект выбросил мощные потоки воды, монооксида углерода (СО), углекислого газа (СО₂) и органических молекул, превратившись в полноценную комету. Наблюдения с помощью космической обсерватории SPHEREx впервые позволили увидеть, как вещество из другой звездной системы начинает полностью испаряться под Солнцем, раскрывая свой изначальный химический состав.
Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
