Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Новое светоуправляемое соединение поможет в борьбе со стволовыми клетками рака
Многие лекарства, особенно применяемые в противораковой терапии, имеют серьезные побочные эффекты и низкую селективность. Ученые НИИ ФОХ ЮФУ создали новый препарат, используя свет. По их словам, облучение светом — это безопасный и доступный способ, который может быть использован для борьбы с рецидивами злокачественных новообразований. Метод эффективен против «побочных» популяций опухолевых клеток, обогащенных стволовыми клетками рака, которые ответственны за рецидивы. Облучение светом также позволяет активировать действие лекарства более точно: в нужное время и в нужном месте.
Низкая селективность действия и наличие серьезных побочных эффектов остаются одними из главных недостатков многих лекарственных препаратов. Особенно остро данный вопрос стоит в области противораковой химиотерапии. Приблизиться к решению данных проблем можно, используя свет, который является одним из наиболее доступных и недеструктивных для живых объектов видов внешнего воздействия.
Введение фотоуправляемой функции в структуру биологически активных соединений позволяет управлять их активностью на расстоянии, заставляя работать наиболее эффективным способом, что в идеальном случае должно привести к устранению либо облегчению побочных эффектов препаратов. Данная стратегия лежит в основе фотофармакологии – одной из стремительно развивающихся областей науки на грани химии, биологии и медицины, а поиск новых восприимчивых к действию света биоактивных молекул является крайне перспективным направлением.
Для понимания, в фотофармакологии свет используется для управления биологической активностью лекарственных средств. Чтобы достичь этого, применяются фотоактивируемые соединения, которые изменяют свои свойства под действием света.
В недавней работе сотрудники НИИ физической и органической химии ЮФУ под руководством кандидата химических наук, заведующего лабораторией специального органического синтеза Ильи Ожогина в результате многостадийного химического синтеза получили новое производное β-эстрадиола – одного из важнейших представителей женских половых гормонов ряда эстрогенов, который помимо своего гормонального действия обладает широким спектром биологической активности, например, оказывает антиатеросклеротическое (предотвращение или замедление развитие атеросклероза) и кардиопротекторное (защита сердца от повреждений и поддержка его нормальной работы) действие, снижает уровень холестерина в крови, проявляет противовоспалительные и антиоксидантные свойства.
Кроме того, многие производные эстрогенов обладают противораковой активностью по отношению к различным типам раковых клеток, в том числе к опухолевым клеткам молочной железы. Все это обеспечивает постоянный интерес к синтезу новых биологически активных молекул, содержащих эстрогеновый остов.
«Полученное нами соединение является первым из известных фотохромным производным β-эстрадиола, которое может менять свою структуру и свойства (в том числе цвет и кислотность) под действием как ультрафиолетового, так и видимого света и относится к ряду фотокислот метастабильного состояния (МФК). Нами были детально изучены строение и спектральные свойства данного соединения, а также проведены комплексные биологические исследования его действия на человеческие раковые клетки HeLa в различных условиях, в частности, с облучением светом и без.
В ходе данных исследований было обнаружено, что исходная и фотоактивированная форма молекулы довольно сильно различаются по токсичности, метаболическим и сигнальным эффектам. Так, после фотоактивации МФК проявляет сходные с эстрадиолом метаболические эффекты – например, индуцирует накопление в клетках триглицеридов и фосфолипидов. При этом, в отличие от ранее описанного эстрадиольного спиропирана, МФК гораздо менее токсична для клеток HeLa вне зависимости от облучения», – отметил старший научный сотрудник, зав. лабораторией специального органического синтеза НИИ ФОХ ЮФУ Илья Ожогин.
Главным результатом исследования стало то, что целевая МФК может значительно (до 10 раз!) уменьшить количество «побочных» опухолевых клеток, которые обогащены стволовыми раковыми клетками и вызывают рецидивы злокачественных новообразований. При этом МФК проявляет минимальные побочные эффекты. Стоит отметить, что таких веществ, способных воздействовать на стволовые раковые клетки, пока очень мало, несмотря на то что их существование было подтверждено около 40 лет назад.
Таким образом, данное вещество является одним из немногих высоко перспективных кандидатов, пригодных для исследований и разработок нового поколения противораковых препаратов, потенциально способных предотвратить рецидив заболевания. Однако до момента его практического применения в терапии предстоит долгий и тернистый путь.
«В дальнейшем нами планируется продолжить работы по синтезу фотоактивных производных эстрогенов и исследованию их на различных линиях раковых клеток. Только после этого можно будет задуматься о проведении доклинических испытаний на лабораторных животных», – рассказал Илья Ожогин. Исследование выполнено при поддержке гранта Российского научного фонда и опубликовано в Journal of Photochemistry and Photobiology B: Biology.
Гамма-излучение, зафиксированное гамма-телескопом «Ферми», по мнению исследователя, может объясняться только распадом вимпов, частиц темной материи, в существовании которых множество других физиков уже разуверились. Если независимые проверки подтвердят открытие, это может существенно изменить космологическую картину мира.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Современная экономика остро зависит от стабильности топливно-энергетического комплекса. Однако его основа, нефтедобыча, сталкивается с истощением легкодоступных запасов. Для оценки их потенциала инженеры используют геолого-гидродинамическое моделирование, позволяющее испытывать стратегии разработки в виртуальной среде и создавать цифровых двойников месторождений. Тем не менее, традиционные подходы к проектированию, основанные на двумерных картах, не дают точной информации о строении пластов. Это ведет к неоптимальной расстановке скважин и потере значительных объемов нефти. Ученые Пермского Политеха разработали методику генерирования множества 3D-моделей с возможностью выбора наиболее достоверных, описывающих реальное геологическое строение месторождений. Исследование позволяет существенно сократить неопределенность в оценке нефтяных запасов и уменьшить количество моделей для анализа.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Ученые разработали штамм цианобактерии, способный поглощать в три раза больше фосфора из сточных вод
Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
